Synopsis: Navigating with Cold Atoms

A torus of trapped cold atoms could be used as a rotation sensor.
Synopsis figure
K. C. Wright et al., Phys. Rev. Lett. (2013)

One of the most sensitive ways to detect magnetic fields is with a superconducting quantum interference device, or SQUID—a small loop of superconducting wire intercepted by one or more junctions. In Physical Review Letters, Kevin Wright and colleagues at the Joint Quantum Institute of the National Institute of Standards and Technology and the University of Maryland have now fabricated an analog to a SQUID by trapping a Bose-Einstein condensate (BEC) of atoms in a ring-shaped potential. This allows them to see the atomic wave function “slip” from one quantized state to another, and could be the basis of a new type of sensor.

In a superconducting loop, the phase of the wave function can only change by multiples of 2π as it winds around the ring. The same holds true if a BEC is confined to a loop. In previous work, the researchers made a looplike circuit out of sodium atoms in a BEC by trapping the atoms in a torus-shaped potential created by two intersecting laser beams. Focusing a third laser at a segment along the torus created a barrier that depleted that region of atoms, similar to the effect of a junction in a SQUID.

Wright et al. are now able to make the BEC wave function jump from a state with zero phase change around the loop to states with 2π and 4π phase shifts by rotating the laser-induced barrier around the circuit at increasingly higher frequencies. Refinements of the atomic device could lead to a new type of rotation sensor, such as those used in spacecraft navigation. – Jessica Thomas


Announcements

More Announcements »

Subject Areas

Atomic and Molecular PhysicsSuperfluidity

Previous Synopsis

Biological Physics

Through the Eye of the Needle

Read More »

Next Synopsis

Quantum Information

Useful Impurities

Read More »

Related Articles

Viewpoint: Bose Polarons that Strongly Interact
Atomic and Molecular Physics

Viewpoint: Bose Polarons that Strongly Interact

Researchers have used impurities within a Bose-Einstein condensate to simulate polarons—electron-phonon combinations in solid-state systems. Read More »

Synopsis: Taking Pictures with Single Ions
Atomic and Molecular Physics

Synopsis: Taking Pictures with Single Ions

A new ion microscope with nanometer-scale resolution builds up images using single ions emitted one at a time from an ion trap. Read More »

Viewpoint: Squeezed Light Reengineers Resonance Fluorescence
Atomic and Molecular Physics

Viewpoint: Squeezed Light Reengineers Resonance Fluorescence

By bathing a superconducting qubit in squeezed light, researchers have been able to confirm a decades-old prediction for the resulting phase-dependent spectrum of resonance fluorescence. Read More »

More Articles