Synopsis: Through the Eye of the Needle

Experiments explain how DNA strands can be captured at their extremities by nanoscale pores.
Synopsis figure
M. Mihovilovic et al., Phys. Rev. Lett. (2013)

Nanopores are nanometer-sized holes in membranes that show promise as DNA sequencers: researchers can monitor the opening and closing of a pore as chains of nucleic acids pass through, as if they were tugging on a strand of pearls. Although typically done with single unfolded biomolecules, larger nanopores can also pull in more than one strand, as might occur with a folded molecule. In Physical Review Letters, Mirna Mihovilovic and colleagues at Brown University, Rhode Island, report experiments that should help clarify how different molecular configurations are captured and move through a nanopore. In particular, they observe that DNA has a favorable tendency to enter the pore end-first.

The authors fabricated a pore 8 nm in diameter through a sheet of silicon nitride separating two conducting aqueous solutions. An applied voltage generates a current that varies according to how much the pore is blocked. The time course of the ionic current indicated whether single strands, multiple strands, or multiple folds of the same strand were passing through, or whether the molecule was a fragment or a damaged strand. From this, Mihovilovic et al. could amass data on capture as a function of the location at which the strand is trapped.

The Brown team found that the probability for a strand to be pulled into the pore at a particular location increased rapidly close to the ends of the polymer. Previously, researchers had assumed that the likelihood of capture was constant along the chain. Their modeling shows that this is due to maximization of configurational entropy: there are many more ways for a polymer to approach the pore end-first than leading with a segment near the middle. – David Voss


Announcements

More Announcements »

Subject Areas

Biological Physics

Previous Synopsis

Quantum Information

ac/dc Spin Control

Read More »

Next Synopsis

Atomic and Molecular Physics

Navigating with Cold Atoms

Read More »

Related Articles

Focus: How Cells Remember Who They Are
Biological Physics

Focus: How Cells Remember Who They Are

A theoretical model of chromosome strands as polymers explains why chemical markers on genes can survive from one cell generation to the next. Read More »

Synopsis: Flocks Without Memory
Biological Physics

Synopsis: Flocks Without Memory

Moving particles with no memory can group together in complex flock configurations using only instantaneous cues.   Read More »

Synopsis: Maintaining the Sequence
Biological Physics

Synopsis: Maintaining the Sequence

Theoretical calculations indicate that an electrospray-based technique could correctly read out the amino acid sequence of protein molecules. Read More »

More Articles