Synopsis: Following the Footsteps of a Chemical Reaction

Femtosecond laser spectroscopy can identify otherwise inaccessible precursors in photoinduced chemical reactions.
Synopsis figure
S. Ruetzel et al., Phys. Rev. Lett. (2013)

Prying open the secrets of chemical reactions on an atomic scale requires speed and cleverness. Speed comes from ultrafast laser spectroscopy in which short light pulses induce reactions—for instance, by exciting a molecule to a higher electronic state—and then probe the unfolding of chemical events in real time. Yet in these so-called pump-probe methods, it is difficult to trace the specific “precursor” state that triggers the reaction because the pump pulses excite a multitude of states. But clever schemes may overcome this limitation. As reported in Physical Review Letters, Stefan Ruetzel and colleagues at the University of Würzburg, Germany, have developed pump-probe techniques capable of unambiguously identifying reaction precursors.

To follow a chemical reaction from start to finish, researchers measure molecular spectra as a function of time. In conventional schemes, a pump pulse prepares the reactant in a desired state, and a second pulse probes intermediate states as product states are reached. The authors add a third pulse to enable an intriguing trick: by measuring correlations of pulses at different frequencies as a function of time, the scheme can determine whether certain electronic transitions in the initial and final states are quantum mechanically connected. In other words, whether a certain electronic state is the precursor of another one.

Similar techniques have been demonstrated for vibrational spectroscopy, but Ruetzel et al. extend them to electronic spectroscopy by using visible wavelength pulses instead of infrared. As a demonstration, they have studied merocyanine, which occurs in two conformations (isomers), and have shown that only one of the isomers becomes a radical cation following photoexcitation. For that isomer, the authors identified, among a multitude of excited states, the specific state that needs to be excited for the reaction to occur. Such detailed tracing of reaction pathways through electronic states may be applicable to study chemical processes underlying photovoltaics and reversible optical data storage. – David Voss


Announcements

More Announcements »

Subject Areas

OpticsChemical Physics

Previous Synopsis

Next Synopsis

Biological Physics

The Hairs Rustling in Your Ears

Read More »

Related Articles

Viewpoint: Cavity with Iron Nuclei Slows Down X Rays
Optics

Viewpoint: Cavity with Iron Nuclei Slows Down X Rays

Slow light effects have been measured for x rays using a cavity filled with iron nuclei, where the speed of light was reduced by a factor of 10,000. Read More »

Synopsis: Nanofiber Optical Memory
Quantum Information

Synopsis: Nanofiber Optical Memory

Light signals propagating down an ultrathin fiber can be temporarily stored in a cloud of cold atoms surrounding the fiber. Read More »

Synopsis: Zooming in on Failures
Optics

Synopsis: Zooming in on Failures

A near-infrared microscopy technique can detect defects in electronic devices with a resolution better than the diffraction limit of light. Read More »

More Articles