Synopsis: Remove the Noise

Atom interferometry may enable ways to measure gravitational waves without the destructive influence of laser fluctuations.
Synopsis figure
S. M. Dickerson/Stanford University

General relativity predicts gravitational waves, but so far they have only been seen indirectly in astrophysical data. International collaborations seek direct evidence with enormous laser interferometers that detect phase shifts caused by gravitational waves, but the sensitivity is limited by laser noise. In Physical Review Letters, Peter Graham and colleagues at Stanford University suggest using the stability and precision of matter waves to ameliorate some of the problems with noise that vex existing experiments.

Atom interferometers can exceed the performance of previous methods by measuring accelerations of free-falling atoms at two locations to ascertain changes in spacetime. One laser is sufficient to probe both sets of falling atoms, so the effects of laser noise can be subtracted out. As the baseline grows to the needed length for gravitation measurements, however, the noise cancellation offers diminishing returns.

Instead, Graham et al. want to use photons to excite and de-excite the atoms, as well as to split and recombine the atom ensemble wave function. When the ensemble merges, the matter-wave interference fringes depend on how long the atoms in one arm stay in the excited state. In this setup, the atoms act as stopwatches that measure the transit time of the excitation and de-excitation laser pulses between the two locations. When a gravitational wave passes through, the light travel time oscillates. The effect is then measured by the atom interferometers, which sense how long the stopwatch atoms have been excited.

If experimentally feasible, the authors say that the proposal offers several advantages. Only a single baseline is needed, instead of two very long crossed interferometer arms. And the method only depends on the constancy of the speed of light, so laser stability has a negligible effect on the measurement. – David Voss


Features

More Features »

Announcements

More Announcements »

Subject Areas

Atomic and Molecular PhysicsGravitation

Previous Synopsis

Biological Physics

Wind-up DNA

Read More »

Next Synopsis

Related Articles

Synopsis: Detecting a Molecular Duet
Atomic and Molecular Physics

Synopsis: Detecting a Molecular Duet

Using a scanning tunneling microscope, researchers detect coupled vibrations between two molecules. Read More »

Viewpoint: How to Create a Time Crystal
Atomic and Molecular Physics

Viewpoint: How to Create a Time Crystal

A detailed theoretical recipe for making time crystals has been unveiled and swiftly implemented by two groups using vastly different experimental systems. Read More »

Viewpoint: What Goes Up Must Come Down
Atomic and Molecular Physics

Viewpoint: What Goes Up Must Come Down

A molecular fountain, which launches molecules rather than atoms and allows them to be observed for long times, has been demonstrated for the first time. Read More »

More Articles