Synopsis: Wind-up DNA

Experiments probe how specific base-pair sequences within a DNA strand behave when the molecule is twisted.

In biological processes such as replication and transcription, DNA’s double helix is unwound and separated so that it can act as a template for making new strands of DNA or RNA. To understand these maneuvers, researchers need to know the details of DNA’s mechanical behavior, in particular how it responds to an applied torque. But available torque-measurement techniques are typically only able to probe this behavior averaged over long strands of DNA. As reported in Physical Review Letters, Florian Oberstrass at Stanford University and colleagues are now able to measure, with unprecedented resolution, the response of specific base-pair sequences when a DNA strand is twisted.

The authors anchored one end of a DNA molecule to a magnetic bead that they could twist to wind or unwind the molecule. A second nanoscale bead, attached above a specific DNA sequence, was used to monitor the ensuing rotation at that site. As they twisted the molecule, the authors observed two different structural changes that are known to depend on the DNA sequence. The weakest DNA sequences (those containing only adenine and thymine base pairs) were found, under certain conditions, to open and close in alternation. The phenomenon, known as DNA “breathing,” is thought to be central in numerous physiological processes. In contrast, winding a DNA sequence based on alternating guanine and cytosine resulted in a structural transition, whereby right-handed DNA (B-DNA) turned into a left-handed configuration (Z-DNA).

The authors were able to describe both strand separation and the right- to left-handed transition with a simple model analogous to a one-dimensional chain of atomic spins. Further characterization of other sequences may lead to a more complete mechanical and thermodynamical model of DNA. – Matteo Rini


Announcements

More Announcements »

Subject Areas

Biological Physics

Previous Synopsis

Next Synopsis

Atomic and Molecular Physics

Remove the Noise

Read More »

Related Articles

Synopsis: Cells Go with the Crowd
Biological Physics

Synopsis: Cells Go with the Crowd

A simple model suggests a way in which clusters of cells could follow concentration gradients in cases where individual cells cannot. Read More »

Synopsis: Identifying Whale Dialects
Biological Physics

Synopsis: Identifying Whale Dialects

A new spectral analysis method can automatically find differences in the calls of whales from separate groups. Read More »

Viewpoint: Putting Bounds on Biochemical Noise
Biological Physics

Viewpoint: Putting Bounds on Biochemical Noise

Biochemical networks are often poorly characterized, but researchers can still derive limits on the level of the random variations or noise in different network components. Read More »

More Articles