Synopsis: Measuring Nothing

Transitions in an atom can allow nondestructive measurement of the quantum vacuum state.
Synopsis figure
D. K. L. Oi et al., Phys. Rev. Lett. (2013)

Measuring empty space should be easy—just put a detector out and watch as it doesn’t do anything. In quantum mechanics, things are more subtle because empty space isn’t really empty and, typically, measuring a state destroys it, at least for subsequent measurements. As Daniel Oi at the University of Strathclyde, UK, and colleagues propose in Physical Review Letters, a single atom might be able to signal the presence or absence of the photon field vacuum state without otherwise altering it.

Oi et al. theoretically analyze a single three-level atom coupled to an optical cavity for storing photons. This atom has a special energy-level diagram—one excited state connected to two lower levels by separate transition paths—called a lambda system. One transition (call it A) is excited by a laser while the other (B) is only in contact with the cavity.

With suitable laser pulses, the atom can, in principle, be forced to evolve in a controllable way such that its state depends on the absence of a photon (vacuum) or presence of one or more photons in the cavity. If there is at least one photon in the cavity, and the atom starts in state B, it will end up in state A while pulling out the photon. Conversely, if the cavity is in a vacuum state (empty), the atom will stay in state B, and the cavity stays empty. This setup would allow multiple sequential operations, or could add new photons or extract one photon at a time from an existing cavity field. – David Voss


Announcements

More Announcements »

Subject Areas

Quantum Information

Previous Synopsis

Next Synopsis

Related Articles

Synopsis: One-Way Quantumness
Quantum Physics

Synopsis: One-Way Quantumness

Experiments provide evidence for one-way quantum steering—an effect by which distant entangled systems can influence one another in a directional way. Read More »

Viewpoint: Quantum Hoverboards on Superconducting Circuits
Quantum Physics

Viewpoint: Quantum Hoverboards on Superconducting Circuits

A new quantum device uses a superconducting circuit to monitor a 2D gas of electrons floating on the surface of superfluid helium. Read More »

Synopsis: Even-Handed Control of Quantum Dot Qubits
Quantum Information

Synopsis: Even-Handed Control of Quantum Dot Qubits

A new way to control the coupling of spins between adjacent quantum dots produces qubits that are less susceptible to electronic noise. Read More »

More Articles