Synopsis: Still Life with Atom

Researchers have trapped a single atom in a tiny cavity, controlling its motion, position, and coupling to photons.
Synopsis figure
A. Reiserer et al., Phys. Rev. Lett. (2013)

Like naturalists chasing bugs with butterfly nets, physicists seek to catch quantum systems and bottle them for study. Single atoms have long been targets of this quest, and now in a paper in Physical Review Letters, Andreas Reiserer and colleagues at Max Planck Institute of Quantum Optics, Germany, report they have managed to capture a single atom and place it inside a tiny cavity, while controlling all of its degrees of freedom.

Single atoms have been trapped in a cavity before but not with such fine control of motion and position. The authors suspended a rubidium atom in a 3D optical lattice created by interference of laser beams. Playing with the laser frequencies and shifting the resulting standing waves, the authors can control the atom’s position, tightly confining the atom into the center of a resonant optical cavity. This placement achieved the maximum coupling of the atom to the cavity photons. Using additional lasers, the researchers were also able to control the atom’s motion, cooling it to a point where its fluctuations were at a minimum (i.e., the atom was in its absolute ground state).

Controlling all the degrees of freedom of a single atom—its internal state, its position and momentum, and its coupling to light—should allow researchers to pin down conditions necessary to further optimize the interaction of atomic qubits with photons for quantum information processing. – David Voss


Announcements

More Announcements »

Subject Areas

Atomic and Molecular Physics

Previous Synopsis

Particles and Fields

A Second Dish of Dark Matter

Read More »

Next Synopsis

Related Articles

Synopsis: Atoms in a Photonic Trap Exhibit Superradiance
Atomic and Molecular Physics

Synopsis: Atoms in a Photonic Trap Exhibit Superradiance

Trapping atoms near a photonic crystal waveguide produces strong atom-photon coupling that results in enhanced atomic emission of light. Read More »

Viewpoint: Intramolecular Imaging at Room Temperature
Atomic and Molecular Physics

Viewpoint: Intramolecular Imaging at Room Temperature

An improved take on an existing approach provides intramolecular imaging of molecules adsorbed on a solid surface at room temperature. Read More »

Viewpoint: Towards an Atomtronic Diode
Atomic and Molecular Physics

Viewpoint: Towards an Atomtronic Diode

Rubidium atoms in an optical trap have been made to exhibit negative differential conductance, a phenomenon normally found in semiconductor diodes. Read More »

More Articles