Synopsis

A Distant Second

Physics 6, s80
By measuring hydrogen line emission with an atomic clock hundreds of kilometers away, researchers place strict limits on possible corrections to relativity.
APS/Don Monroe

Light emission from hydrogen atoms allows spectacularly precise confirmation of quantum-mechanical laws. But theorists have yet to fully reconcile those laws with relativity, the other major foundation of modern physics. In Physical Review Letters, a multilaboratory collaboration reports improved hydrogen measurements that place limits on how big one possible correction to relativity could be.

Researchers at the Max Planck Institute for Quantum Optics in Garching, Germany, have pioneered methods that connect optical emission frequencies to the much lower radio frequencies of atomic clocks. But the best atomic clocks, based on a fountain of cesium atoms, are in distant labs such as the Federal Physical-Technical Institute (PTB) in Braunschweig, and can’t be easily moved. So the two labs synchronized their setups by sending light signals back and forth over a 920- km-long optical fiber. The connection allowed them to express the 1S- 2S transition frequency in terms of the international standard definition of the second as 2,466,061,413,187,018 hertz, with an uncertainty of just 11 hertz.

The researchers exploited the unprecedented precision to look for variations of the frequency over a year. Such variations would show that the frequency depends on the motion of the Earth around the Sun, which is forbidden by relativity. But the team estimates that parameters that quantify that dependence can be no larger than a few parts in 1011. One of the parameters is slightly different from zero, but even more precise measurements will be needed to determine if this difference is truly significant. – Don Monroe


Subject Areas

Atomic and Molecular Physics

Related Articles

Elusive Clock Transition in Strontium Revealed
Atomic and Molecular Physics

Elusive Clock Transition in Strontium Revealed

Researchers have measured a hard-to-observe electronic transition in strontium that was predicted six decades ago. Read More »

A Step toward Quantum Gases of Doubly Polar Molecules
Atomic and Molecular Physics

A Step toward Quantum Gases of Doubly Polar Molecules

Researchers created an ultracold gas of molecules with strong magnetic dipoles, which may lead to new types of Bose-Einstein condensates. Read More »

A Close Look at the Dynamics of an Ion–Neutral Reaction
Astrophysics

A Close Look at the Dynamics of an Ion–Neutral Reaction

A detailed study of a reaction between a molecular ion and a neutral atom has implications for both atmospheric and interstellar chemistry. Read More »

More Articles