Synopsis: Quickening the Pulse

A theoretical study suggests that infrared laser pulses can create sequences of x-ray pulses as short as a few hundred zeptoseconds.
Synopsis figure
C. Hernández-García et al., Phys. Rev. Lett. (2013)

Researchers use ultrashort flashes of light to probe fast movements in the atomic world. Femtosecond (1fs=10-15s) laser pulses, now routine, are fast enough to follow the motion of atoms and have been used to watch the unfolding of chemical reactions. Attosecond (1as=10-18s) pulses, demonstrated in the last decade, can capture the movements of electrons. But physicists want to push these limits ever further. Zeptosecond (1zs=10-21s) flashes, not yet available, could capture the even faster dynamics of subatomic particles, such as neutrons and protons coming together to form a nucleus, or coming apart during nuclear fission. In Physical Review Letters, Carlos Hernández-García from the University of Salamanca, Spain, and JILA in Boulder, Colorado, and colleagues report a theoretical proposal for the generation of sequences of zeptosecond x-ray pulses.

In the authors’ scheme, infrared laser pulses are used to excite an atomic gas: as in similar approaches for attosecond generation, the laser field strips electrons from the atoms, and then drives them back to the parent ion when the sign of the field reverses. When the electrons rejoin the atom, they release their kinetic energy in the form of high-order harmonic frequencies in the x-ray range. Compared to attosecond schemes, the main novelty is the use of driving lasers at longer wavelengths: using a recently developed formalism to model high-harmonic generation, the authors calculate that if the infrared wavelength exceeds 8 micrometers, electron wave packets emitted at different phases of the excitation cycle interfere to generate pulsed waveforms with durations below one attosecond. – Matteo Rini


Features

More Features »

Announcements

More Announcements »

Subject Areas

Atomic and Molecular PhysicsOptics

Previous Synopsis

Atomic and Molecular Physics

Watching a Quick Shift

Read More »

Next Synopsis

Quantum Information

Quieter Quantum Amplifiers

Read More »

Related Articles

Viewpoint: How to Create a Time Crystal
Atomic and Molecular Physics

Viewpoint: How to Create a Time Crystal

A detailed theoretical recipe for making time crystals has been unveiled and swiftly implemented by two groups using vastly different experimental systems. Read More »

Viewpoint: What Goes Up Must Come Down
Atomic and Molecular Physics

Viewpoint: What Goes Up Must Come Down

A molecular fountain, which launches molecules rather than atoms and allows them to be observed for long times, has been demonstrated for the first time. Read More »

Viewpoint: Matter-Light Condensates Reach Thermal Equilibrium
Photonics

Viewpoint: Matter-Light Condensates Reach Thermal Equilibrium

Making use of improved microcavities, hybrid condensates of matter and light can be tuned to reach a thermal equilibrium state, despite their finite lifetime. Read More »

More Articles