Synopsis

Rapid-Fire Random Bits

Physics 6, s102
Tests show that an all-electronic system can generate 80 billion random bits per second.

Encrypted communications and other technologies require billions of random bits per second, but generating them in software isn’t truly random. Chaotic laser signals can also produce randomness, but now Wen Li, of the Chinese Academy of Sciences in Suzhou, and her colleagues report in Physical Review Letters a simpler, all-electronic system that might someday become a “random bit chip.” It uses chaotic currents in a superlattice to generate 80 billion random bits per second.

The superlattice used by the team was like a multilayered semiconductor sandwich that presented vertically traveling electrons with two sequential barriers. Such a structure leads to plateaus in the current-voltage curve. Fixing the voltage at one of these plateaus can produce a current that spikes at random intervals, roughly every 5 nanoseconds. Last year Li and colleagues reported that the amplitude of this current might be suitable for rapid random bit generation.

Now Li and her Chinese colleagues along with collaborators from Bar-Ilan University in Israel have put this superlattice through its paces, using two different signal processing techniques to increase the “bumpiness” of the current signal between spikes. With a more rapidly varying signal, the team could generate a higher rate of random bits. The first technique involved taking multiple derivatives; the second involved combining several sections of the signal from different times. In each case, the team saved only the last four or five “least significant” bits of each point sampled from the amplitude to add to the random bit stream and then verified the randomness with statistical tests. They say either technique or a combination may be appropriate, depending on experimental requirements. – David Ehrenstein


Subject Areas

Semiconductor PhysicsNonlinear DynamicsElectronics

Related Articles

Infrared Single-Photon Detector for Astronomy
Superconductivity

Infrared Single-Photon Detector for Astronomy

An infrared detector is sensitive to a wide range of intensities and could potentially pick up biomarkers from exoplanet atmospheres. Read More »

How to Detect a Stream of Microwave Photons
Superconductivity

How to Detect a Stream of Microwave Photons

A new device converts a stream of microwave photons into an electric current with high efficiency, which will benefit quantum information technologies. Read More »

Time Delays Improve Performance of Certain Neural Networks
Computational Physics

Time Delays Improve Performance of Certain Neural Networks

Both the predictive power and the memory storage capability of an artificial neural network called a reservoir computer increase when time delays are added into how the network processes signals, according to a new model. Read More »

More Articles