Synopsis: Rapid-Fire Random Bits

Tests show that an all-electronic system can generate 80 billion random bits per second.

Encrypted communications and other technologies require billions of random bits per second, but generating them in software isn’t truly random. Chaotic laser signals can also produce randomness, but now Wen Li, of the Chinese Academy of Sciences in Suzhou, and her colleagues report in Physical Review Letters a simpler, all-electronic system that might someday become a “random bit chip.” It uses chaotic currents in a superlattice to generate 80 billion random bits per second.

The superlattice used by the team was like a multilayered semiconductor sandwich that presented vertically traveling electrons with two sequential barriers. Such a structure leads to plateaus in the current-voltage curve. Fixing the voltage at one of these plateaus can produce a current that spikes at random intervals, roughly every 5 nanoseconds. Last year Li and colleagues reported that the amplitude of this current might be suitable for rapid random bit generation.

Now Li and her Chinese colleagues along with collaborators from Bar-Ilan University in Israel have put this superlattice through its paces, using two different signal processing techniques to increase the “bumpiness” of the current signal between spikes. With a more rapidly varying signal, the team could generate a higher rate of random bits. The first technique involved taking multiple derivatives; the second involved combining several sections of the signal from different times. In each case, the team saved only the last four or five “least significant” bits of each point sampled from the amplitude to add to the random bit stream and then verified the randomness with statistical tests. They say either technique or a combination may be appropriate, depending on experimental requirements. – David Ehrenstein


More Announcements »

Subject Areas

Semiconductor PhysicsNonlinear DynamicsElectronics

Previous Synopsis

Quantum Information

Quieter Quantum Amplifiers

Read More »

Next Synopsis

Related Articles

Synopsis: Valley of the Dichalcogenides
Semiconductor Physics

Synopsis: Valley of the Dichalcogenides

A magnetic field can be used to change the “valley” states that emerge in certain semiconductors. Read More »

Focus: Surface Waves Store Bouncing Droplet’s History
Nonlinear Dynamics

Focus: Surface Waves Store Bouncing Droplet’s History

A droplet bouncing and wandering across a liquid surface can produce waves that store the history of its chaotic motion. Read More »

Synopsis: Ultrafast Switching in a Phase-Change Material
Condensed Matter Physics

Synopsis: Ultrafast Switching in a Phase-Change Material

New experiments show that picosecond pulses of light can effectively switch off the resistance in phase-change materials that are used for storing computer information. Read More »

More Articles