Synopsis: The 35000% Solution

Researchers have discovered a new kind of large magnetoresistive effect in a highly conducting layered oxide.
Synopsis figure
Courtesy H. Takatsu/Tokyo Metropolitan University

The discovery of giant magnetoresistance (GMR)—unusually large changes in electrical resistance of multilayered materials in a magnetic field—began as a fundamental study in the 1980s but revolutionized the technology of hard drive data storage. GMR’s large swings in resistance originate in the spin-dependent scattering of electrons flowing along or across thin, alternating layers of ferromagnetic and nonmagnetic materials. Depending on the details, GMR resistance changes can be about 40% at room temperature.

Now, Hiroshi Takatsu of Tokyo Metropolitan University, Japan, and colleagues report in Physical Review Letters their discovery of a different sort of extreme magnetoresistive variation in a nonmagnetic material. Previously overlooked, this effect may lead to new types of magnetic sensors.

Takatsu et al. studied PdCoO2, a highly conductive nonmagnetic metallic oxide, but one that is intrinsically layered. They found a 35000% change in the material’s resistance when it was placed in a 14-tesla field and cooled to 2 kelvin. The researchers attribute this change to the Lorentz force induced by the strong field that disrupts the motion of electrons trying to cross the layers. In essence, the electrons get trapped in orbital motions rather than contributing to current flow, as if a group of marathon runners started going in circles instead of striving for the finish line.

The authors speculate that the effect hasn’t been observed before because of the dearth of atomically spaced layered compounds with high carrier mobility. And while it remains to be seen if the effect can occur without requiring liquid helium cooling and immense external magnets, the result reveals a new avenue for exploring magnetoresistive materials. — David Voss


Announcements

More Announcements »

Subject Areas

Atomic and Molecular Physics

Previous Synopsis

Atomic and Molecular Physics

New Atomic Trios Follow the Rules

Read More »

Next Synopsis

Atomic and Molecular Physics

A “Magic Frequency” for Atomic Spectroscopy

Read More »

Related Articles

Focus: Strong Light Reflection from Few Atoms
Optics

Focus: Strong Light Reflection from Few Atoms

Up to 75% of light reflects from just 2000 atoms aligned along an optical fiber, an arrangement that could be useful in photonic circuits. Read More »

Viewpoint: Ionization Delays That Stand Out
Optics

Viewpoint: Ionization Delays That Stand Out

Attosecond-resolution experiments have determined the delay in an electron’s emission from a molecule after being ionized with light. Read More »

Focus: Giant Molecule Made from Two Atoms
Atomic and Molecular Physics

Focus: Giant Molecule Made from Two Atoms

Experiments confirm the existence of 1-micrometer-sized molecules made of two cesium atoms by showing that their binding energies agree with predictions.   Read More »

More Articles