Synopsis: Into the Vortex

With a few simple adjustments, an electron beam can be turned into a spiraling vortex beam.
Synopsis figure
L. Clark et al., Phys. Rev. Lett. (2013)

For decades, electron microscope designers have sought precision, building better and better lenses to make electrons fly true from the source and hit dead on target. Now a research team has discovered that with a bit of lens hacking, aberrations in the focusing system of an electron microscope can be turned to good use. In a paper in Physical Review Letters, Laura Clark at the University of Antwerp, Belgium, and colleagues present experimental work showing that the lenses normally used to correct aberration can impart a twist to the electrons, creating what is known as a vortex beam.

Unlike the nice uniform wave fronts desired by designers of optical and electron microscopes, vortex beams have a spiraling wave front that rotates, like a corkscrew, around the beam axis as it propagates. Researchers have long investigated electromagnetic vortex beams of light and radio waves, which find applications in optical imaging and communications technology. Vortex electron beams are more recent, and most sources are not very intense. Clark et al. found that they could crank up the multipole electromagnets normally used to correct aberrations in a TEM electron beam to the point where the distortions took over and became a strong and nearly ideal vortex beam.

The method is simple—readjust the aberration correctors and insert an annular aperture into the focusing system to block nonvortex components. With further improvement, these helical-phase electron beams could allow researchers to probe the nanoscopic magnetic structure of materials or manipulate small particles with exquisite accuracy. – David Voss


Announcements

More Announcements »

Subject Areas

NanophysicsMaterials Science

Previous Synopsis

Atomic and Molecular Physics

A “Magic Frequency” for Atomic Spectroscopy

Read More »

Next Synopsis

Atomic and Molecular Physics

Laser Spectroscopy Refines Boltzmann Constant

Read More »

Related Articles

Focus: Complex Crystals Form from Heterogeneous Particles
Materials Science

Focus: Complex Crystals Form from Heterogeneous Particles

A suspension containing particles with wide-ranging diameters can crystallize into multiple ordered structures. Read More »

Synopsis: Glassy Fingerprints
Condensed Matter Physics

Synopsis: Glassy Fingerprints

The local structure of glasses and other disordered materials could be extracted from diffraction patterns, according to a proposal for a new technique. Read More »

Synopsis: Electron–Phonon Affair Comes to Light
Condensed Matter Physics

Synopsis: Electron–Phonon Affair Comes to Light

Photoelectron spectroscopy reveals the details of the interaction between electronic and vibrational excitations in a molecular material. Read More »

More Articles