Synopsis: Powering Up Terahertz Sources

A laser-based scheme generates short pulses of terahertz radiation with peak power close to a gigawatt.
Synopsis figure
Courtesy Amrutha Gopal/Friedrich Schiller University Jena

Terahertz (THz) radiation—the band of frequencies falling between the microwave and visible range—can pass through materials that block light and couple to important rotational, vibrational, or electronic degrees of freedom of solids and molecules. Many applications could take advantage of these properties, from wireless communications to imaging of biomolecules or semiconductor wafers. But a key stumbling block for THz technologies is the development of sufficiently powerful sources. Now, as reported in Physical Review Letters, Amrutha Gopal at the Friedrich Schiller University Jena, Germany, and co-workers have demonstrated a laser-based source that emits short THz pulses with the highest peak power ever recorded in a laboratory.

Presently, the most powerful THz sources are at expensive, large-scale accelerator facilities, which generate THz radiation by bending a beam of relativistic electrons with a magnet. Gopal et al.’s solution instead exploits a high-power laser available at the Friedrich Schiller University Jena. The authors focus the laser’s femtosecond pulses onto micrometer-thick metallic foils. The intense pulses ionize the material, creating hot plasma that emits THz radiation. The setup delivers ten THz pulses per second with a broad spectrum (0.330 THz). Since the energy is concentrated in pulses only about half a picosecond long, their peak power is close to a gigawatt.

The scheme also generates a synchronous beam of energetic ions, which suggests an intriguing medical application: the THz beam could be used for detecting cancerous cells on human skin (which reflect THz wavelengths differently than normal cells), while the ions could be directed selectively at such cells for simultaneous treatment. – Matteo Rini


Announcements

More Announcements »

Subject Areas

OpticsMaterials Science

Previous Synopsis

Soft Matter

Branching Out

Read More »

Next Synopsis

Atomic and Molecular Physics

Molecular Memory for Light

Read More »

Related Articles

Focus: Crack Patterns Resemble Fluid Turbulence
Materials Science

Focus: Crack Patterns Resemble Fluid Turbulence

A statistical analysis of crack surfaces from three different materials reveals a deep connection with fluid turbulence and a potentially new approach to studying failed machine parts. Read More »

Viewpoint: Cavity with Iron Nuclei Slows Down X Rays
Optics

Viewpoint: Cavity with Iron Nuclei Slows Down X Rays

Slow light effects have been measured for x rays using a cavity filled with iron nuclei, where the speed of light was reduced by a factor of 10,000. Read More »

Synopsis: Spin Transport in Room-Temperature Germanium
Magnetism

Synopsis: Spin Transport in Room-Temperature Germanium

Germanium layers can carry spin-polarized currents over several hundred nanometers at room temperature, a key asset for spintronic applications. Read More »

More Articles