Synopsis: An Uncertain Big G

Measured values of Newton’s constant of gravitation differ depending on the experiment, but researchers still aren’t sure why.
Synopsis figure
Courtesy T. Quinn/BIPM

Newton’s constant of gravitation, G, is a fundamental constant of nature that determines the gravitational force between two massive bodies. First measured over 200 years ago by Nevil Maskelyne, the precise value of G remains a moving target for modern experimentalists: Recent reports of the value of G vary by over 400 parts per million, 20 times greater than the uncertainty in any one measurement. To better understand this variation, Terry Quinn at the International Bureau of Weights and Measures, France, and colleagues looked for systematic errors in their own setup by rebuilding, from scratch, the apparatus they used to measure G twelve years ago and comparing the results.

Gravity is the weakest of the known forces, which makes measuring its effects on laboratory-sized objects difficult. To determine G, researchers use a device called a torsional balance, in which a suspended configuration of masses experiences a torque because of gravitational forces. However, one known problem in these experiments is temperature variation, which can cause certain components in the balance to expand or contract over the course of a measurement. Since the deflections being measured are small—about a hundredth of a degree—fluctuations can significantly affect the results.

Quinn et al.’s new experiment consists of a ribbon-suspended torsional balance that allows G to be measured in two independent ways: from angular deflection and from the electrostatic force needed to cancel out the effects of gravity. As reported in Physical Review Letters, the authors’ new value of G is 6.67545(18) x 10-11m3/(kgs2)—within the uncertainty of their first experiment, but significantly different from the values found by other groups. Why the discrepancy? Quinn et al. don’t know, but surmise it may come from unidentified experimental errors. – Katherine Thomas


Announcements

More Announcements »

Subject Areas

Gravitation

Previous Synopsis

Particles and Fields

Heavy Quark Model Lands on Solid Footing

Read More »

Next Synopsis

Nuclear Physics

Element 115 Confirmed

Read More »

Related Articles

Viewpoint: The Simplicity of Black Holes
Astrophysics

Viewpoint: The Simplicity of Black Holes

The no-hair theorem was originally formulated to describe isolated black holes, but an extended version now describes the more realistic case of a black hole distorted by nearby matter. Read More »

Synopsis: Neutrino Test of Lorentz Invariance
Gravitation

Synopsis: Neutrino Test of Lorentz Invariance

Oscillations in atmospheric neutrinos show no sign of violating a fundamental principle of relativity. Read More »

Synopsis: A Casimir Effect Caused by Gravity
Gravitation

Synopsis: A Casimir Effect Caused by Gravity

Evidence that gravitational waves induce an attractive force between two closely spaced mirrors could confirm gravity’s quantum nature. Read More »

More Articles