Synopsis

Heavy Quark Model Lands on Solid Footing

Physics 6, s116
A new measurement of bottom-quark hadron lifetimes resolves a theoretical mystery.
CERN/LHCb

To make sense of the gigabytes of data coming out of the Large Hadron Collider, physicists need good theoretical models of how quarks and gluons form the larger particles called hadrons. For hadrons containing a relatively massive b (or bottom) quark, an early approach—the free quark model—doesn’t work well, so researchers developed a “heavy quark expansion” model that recognizes interactions among the quarks. In a paper in Physical Review Letters, the LHCb Collaboration reports high-energy collision data that lend substantial support to the heavy quark expansion theory, which has become the best approach for some important calculations.

One test of this theory is to look at the lifetimes of two very different creatures: the Λb hadron (comprising an up, down, and bottom quark) and the anti-B meson (comprising a down antiquark and a bottom quark). According to the heavy quark expansion, the lifetimes of the two particles should be dominated by the b quark and thus equal to within a few percent. However, data emerging from LHC’s predecessor, LEP, indicated that Λb had a shorter lifespan than the B meson by a large margin.

Better data are now reported by the LHCb researchers, who studied Λb and anti-B decays from 7 tera-electron-volt proton-proton collisions. They find a ratio of lifetimes of 0.976, or equal within a few percent, as predicted by the heavy quark expansion. Moreover, the prediction was obtained without any corrections to the model, giving support to this treatment of quarks within hadrons. – David Voss


Subject Areas

Particles and Fields

Related Articles

First Glimpses of the Neutrino Fog
Particles and Fields

First Glimpses of the Neutrino Fog

Two dark matter searches report that their detectors have likely recorded neutrinos coming from the Sun—spotting the “neutrino fog” that could imperil future dark matter searches. Read More »

Searching for Dark  Matter Variants of Quarks and Gluons
Particles and Fields

Searching for Dark Matter Variants of Quarks and Gluons

A low-energy signature of physics beyond the standard model fails to appear in proton collisions at the Large Hadron Collider. Read More »

Searching for Axions in Polarized Gas
Particles and Fields

Searching for Axions in Polarized Gas

By exploiting polarized-gas collisions, researchers have conducted a sensitive search for exotic spin-dependent interactions, placing new constraints on a dark matter candidate called the axion. Read More »

More Articles