Synopsis

Classical vs Quantum

Physics 6, s117
An experimental realization of one of Einstein’s thought experiments shows that the quantum world is even more complex than previously thought.
L. Schmidt et al., Phys. Rev. Lett. (2013)

A particle passes through a single slit and then through one opening of a double slit. Can the pathway of the particle be determined without destroying the interference structure? This was a question first debated by Einstein and Bohr as they tried to understand the newly developed ideas of quantum physics. Einstein argued that classical physics was sufficient; you could determine the particle’s path by measuring the momentum transfer imparted from the deflection of the particle by the first slit. Bohr claimed instead that the slits, as well as the particle, behave as quantum objects, whose position and momentum are uncertain—we can either know which path the particle takes through the slit maze, or how long the path is, but not both.

So who was right? Writing in Physical Review Letters, Lothar Schmidt and colleagues, from Goethe University in Germany, show that Bohr was right. In their experiments, the team replaced the slits with hydrogen-deuteron molecular ions and bombarded them with helium atoms. As the atoms collided with the ions, an electron was exchanged between the atom and the ion. By measuring this exchange they could determine the positions and orientation of the atoms and ions. The scattering of the atoms was consistent with Bohr’s view; you need a quantum description of the slits and particles to understand the results. However, the results could still be correctly predicted using classical slits, but only if the particle simultaneously passed through both holes of the double slit and transferred half of its momentum to each path. – Katherine Thomas


Subject Areas

Quantum Physics

Related Articles

Exploring Quantum Mpemba Effects
Quantum Physics

Exploring Quantum Mpemba Effects

In the Mpemba effect, a warm liquid freezes faster than a cold one. Three studies investigate quantum versions of this effect, challenging our understanding of quantum thermodynamics. Read More »

A Simple Electronic Circuit Manifests a Complex Physical Effect
Atomic and Molecular Physics

A Simple Electronic Circuit Manifests a Complex Physical Effect

Using a single set of measurements of an electronic circuit, researchers have characterized the properties of the topologically protected edge states of a quantum Hall system. Read More »

A Better Way to Charge a Quantum Battery
Energy Research

A Better Way to Charge a Quantum Battery

Coupling the charger and battery to a common reservoir induces a direct flow of energy into the battery. Read More »

More Articles