Synopsis

Cross-Country Time Keeping

Physics 6, s119
A new distance record is set in the fiber transmission of stable frequency signals capable of synchronizing atomic clocks.
MPQ (WoogieWorks, Vienna)

Next-generation atomic clocks are so precise they can’t be synchronized remotely with traditional communication pathways. Researchers are therefore investigating novel synchronization methods. A new milestone in this development is presented in Physical Review Letters, with the longest distance transmission of a highly stable optical frequency. The signal was sent back and forth across Germany on optical fibers, while keeping a fixed frequency to within a few parts in 1019.

Several applications, such as navigation and fundamental physics, require the comparison of clocks at large physical separation. In geodesy, for example, the time difference between two distant clocks can provide relative elevation measurements with centimeter precision. Currently, clock signals are relayed by satellite communication, but the frequency of these radio signals drifts over time by as much as a few parts per 1016. Higher stability is needed to compare recently developed optical atomic clocks that have precisions on the order of one part in 1017.

Several past experiments have shown that optical fibers can faithfully transmit a clock-synchronizing frequency signal over hundreds of kilometers. Stefan Droste of Max Planck Institute of Quantum Optics, Germany, and his colleagues have now sent a highly stable 194 terahertz ( 1542 nanometer) frequency over a distance of 1840 kilometers, doubling their previous record. The team achieved this result by equipping the dedicated optical fiber connecting two German research institutions with active stabilization to overcome frequency shifts from thermal noise and acoustic noise. The method might one day link together optical clocks around the world. – Michael Schirber


Subject Areas

Atomic and Molecular PhysicsOptics

Related Articles

Delay Detected in Photon Generation
Optics

Delay Detected in Photon Generation

The observation of a previously unseen photon delay in the production of quantum light has implications for the development of quantum technologies. Read More »

How to Move Multiple Ions in Two Dimensions
Quantum Information

How to Move Multiple Ions in Two Dimensions

A scheme that moves electromagnetically trapped ions around a 2D array of sites could aid development of scaled-up ion-based quantum computing. Read More »

Ejected Electron Slows Molecule’s Rotation
Chemical Physics

Ejected Electron Slows Molecule’s Rotation

Sometimes a rotating molecule can transition to a new state only if an electron carries away some of the molecule’s angular momentum. Read More »

More Articles