Synopsis: Element 115 Confirmed

Experiments have confirmed the existence of a superheavy element first observed in 2003.

Just past copernicium (element 112) in the periodic table, several of the few known heavier elements remain nameless. That’s because they’ve only been observed once, and the scientific bodies responsible for naming new elements, the International Union of Pure and Applied Chemistry and the International Union of Pure and Applied Physics, require, at a minimum, an independent confirmation. That moment has now arrived for element 115. Dirk Rudolph of Lund University in Sweden and researchers working at the GSI Helmholtz Centre for Heavy Ion Research, Germany, report in Physical Review Letters that they have produced and detected the element, corroborating the first observation in 2003 by scientists in Dubna, Russia.

Most heavy elements can only be synthesized in heavy-ion collisions and have short lifetimes. To produce an element with 115 protons, the researchers at GSI bombarded a rotating target coated with americium (95 protons) with a beam of calcium atoms (20 protons) traveling at about one-tenth the speed of light. Over the course of three weeks, they observed the radioactive decay of 30 nuclei of element 115, consistent with what the Dubna scientists had seen. But a new component of the work was the researchers’ ability to detect flashes of emitted light as the nuclei decayed to lighter, more stable isotopes. The energies of these flashes were used to determine the number of protons in several of the daughter nuclei, providing additional support that they originated in element 115.

Rudolph et al.’s experiments aren’t just about naming rights for the new element; their work is part of a larger effort to find new ways to synthesize and study superheavy elements. Some of these elements are expected to lie in a theoretically predicted “island of stability”—a group of isotopes that are relatively stable because of the number of neutrons and protons they contain. – Jessica Thomas


Announcements

More Announcements »

Subject Areas

Nuclear Physics

Previous Synopsis

Gravitation

An Uncertain Big G

Read More »

Next Synopsis

Particles and Fields

Neutron Bursts in Lab Lightning

Read More »

Related Articles

Viewpoint: Can Four Neutrons Tango?
Nuclear Physics

Viewpoint: Can Four Neutrons Tango?

Evidence that the four-neutron system known as the tetraneutron exists as a resonance has been uncovered in an experiment at the RIKEN Radioactive Ion Beam Factory. Read More »

Synopsis: Throwing Nuclei in the Ring
Nuclear Physics

Synopsis: Throwing Nuclei in the Ring

By trapping nuclei in a particle storage ring, researchers characterize previously inaccessible nuclear reactions that take place in stellar explosions. Read More »

Viewpoint: Cavity with Iron Nuclei Slows Down X Rays
Optics

Viewpoint: Cavity with Iron Nuclei Slows Down X Rays

Slow light effects have been measured for x rays using a cavity filled with iron nuclei, where the speed of light was reduced by a factor of 10,000. Read More »

More Articles