Synopsis: A Black Hole’s Lucky Stars

Ancient supermassive black holes may have formed from the merging of two black holes created in the collapse of supermassive stars.
Synopsis figure
C. Reisswig et al., Phys. Rev. Lett. (2013)

Astronomers have recently discovered, in the most remote corners of the Universe, a number of quasars surrounding black holes a billion times more massive than the Sun. Researchers have dated these distant supermassive black holes (SMBHs) to only several hundred million years after the Big Bang, but are uncertain how such massive objects could have formed so quickly. Writing in Physical Review Letters, Christian Reisswig at the California Institute of Technology and colleagues analyze one possible origin of SMBHs in the early Universe.

Black holes are believed to grow from an initial “seed” that accretes more matter over time. But assuming realistic accretion rates, SMBHs that formed soon after the Big Bang must have come from already massive seeds. Researchers have proposed that large enough seeds could have formed either directly from a primordial gas cloud or in the aftermath of the collapse of a massive star.

Using hydrodynamic models based on general relativity, Reisswig et al. simulated one scenario in which a pair of SMBHs forms from the collapse of stars with masses ~10,000 times that of the Sun. The process is possible if the star is rotating rapidly and, at the onset of its collapse, small binary fluctuations in the star’s density are present. These fluctuations may seed the development of a pair of black holes that subsequently inspiral and merge into a single SMBH.

According to their calculations, this type of SMBH formation would have been accompanied by the emission of intense gravitational waves. Upcoming space-based gravitational-wave observatories may take note and aim their detectors at SMBHs to reveal the elusive waves predicted by Einstein in 1915. – Matteo Rini


Features

More Features »

Announcements

More Announcements »

Subject Areas

AstrophysicsCosmology

Previous Synopsis

Atomic and Molecular Physics

Interferometry with Entangled Atoms

Read More »

Next Synopsis

Particles and Fields

Son et Lumière

Read More »

Related Articles

Viewpoint: Dark Matter Still at Large
Cosmology

Viewpoint: Dark Matter Still at Large

No dark matter particles have been observed by two of the world’s most sensitive direct-detection experiments, casting doubt on a favored dark matter model. Read More »

Viewpoint: New Clues as to Why Boyajian’s Star is Dimming
Statistical Physics

Viewpoint: New Clues as to Why Boyajian’s Star is Dimming

A statistical analysis links a star’s mysterious brightness fluctuations to internal nonequilibrium phenomena, rather than structures orbiting around the star. Read More »

Viewpoint: Searching for Baby Planets in a Star’s Dusty Rings
Astrophysics

Viewpoint: Searching for Baby Planets in a Star’s Dusty Rings

Images of gaps in the dust and gas around a young star provide the best evidence to date that these gaps host newly formed planets. Read More »

More Articles