Synopsis: Cosmic-Ray Positrons Limit Dark Matter Models

New constraints on the nature of dark matter particles are based on the energy spectrum of positrons detected in cosmic rays.
Synopsis figure
NASA Goddard’s Scientific Visualization Studio

Astrophysicists are still trying to make sense out of an excess of positrons recently revealed in cosmic-ray data. One possible explanation is that these antielectrons result from dark matter decays or annihilations. A new analysis shows that certain dark matter models are constrained by the smoothness of the positron energy spectrum. In Physical Review Letters, the authors place the strictest limits yet on potential annihilation scenarios for dark matter particles.

Many cosmologists assume that the dark matter is a weakly interacting particle with a mass between 10 and 1000 GeV/c2 (where the proton mass is about 1 GeV/c2). These particles may decay or self-annihilate through collisions, producing positrons and other secondary particles. Such a mechanism could explain the observed rise in the fraction of cosmic-ray positrons above 10 GeV. However, it’s also possible that the detected positron excess comes from nearby pulsars.

Even if dark matter is not the main source of the positron excess, it may be contributing on a small level. That is the assumption of Lars Bergström from Stockholm University, Sweden, and his colleagues, who have looked for a possibly hidden dark matter signal in the positron spectrum from the Alpha Magnetic Spectrometer (AMS) onboard the International Space Station (see 3 April 2013 Viewpoint) This predicted signal would be a slight bump in the spectrum near the energy corresponding to the mass of the dark matter particle. Not finding any bumps in the AMS data, the researchers determine upper limits for dark matter annihilation parameters. These constraints are tightest at the low-energy range, where the AMS error bars are smaller. The results call into question the viability of low mass (around 10 GeV/c2) dark matter candidates. – Michael Schirber


Announcements

More Announcements »

Subject Areas

Particles and FieldsAstrophysicsCosmology

Previous Synopsis

Quantum Physics

Rescuing Heisenberg

Read More »

Next Synopsis

Particles and Fields

Dirac Oscillator with Microwaves

Read More »

Related Articles

Synopsis: Sharper Vision for Infrared Telescopes
Optics

Synopsis: Sharper Vision for Infrared Telescopes

Converting infrared light to visible light might boost the sensitivity of infrared telescope arrays. Read More »

Focus: More Hints of Exotic Cosmic-Ray Origin
Astrophysics

Focus: More Hints of Exotic Cosmic-Ray Origin

New Space Station data support a straightforward model of cosmic-ray propagation through the Galaxy but also add to previous signs of undiscovered cosmic-ray sources such as dark matter. Read More »

Viewpoint: Connecting the Bright and Dark Sides of Galaxies
Cosmology

Viewpoint: Connecting the Bright and Dark Sides of Galaxies

A universal law shows that the rotation of a disk galaxy is determined entirely by the visible matter it contains, even if the disk is mostly filled with dark matter. Read More »

More Articles