Synopsis: Planet Search Finds No Dark Matter Black Holes

Using data from a planet-hunting mission, scientists place new limits on a supposed population of black holes that could act as dark matter.
Synopsis figure
NASA/Kepler mission/Wendy Stenzel

Dark matter remains such a mystery that we’re still unsure whether it’s made of microscopic particles or macroscopic bodies. On the “macro” side, dark matter could consist of relatively small black holes that formed in the early Universe. We might detect one of these so-called primordial black holes as gravitational lenses of background stars. A new analysis of data from the Kepler mission’s search for Earth-sized planets finds no black hole lensing events. From this nondetection, the researchers, reporting in Physical Review Letters, rule out part of the mass range previously thought still available for dark matter black hole candidates.

Dark matter provides the missing mass needed to keep galaxies from flying apart, but the components of this dark matter are not well constrained as far as their individual size goes. Primordial black holes, which come out of certain models of the early Universe, have a wide range of possible masses. However, certain black hole masses have already been excluded as the dominant form of dark matter because they would have shown up in astronomical data. The currently viable range for primordial black holes is between 10-2 and 10-7 Earth masses.

Now Kim Griest of the University of California, San Diego, and his colleagues have reduced this range further using Kepler observations. For four years, the Kepler satellite monitored roughly 150,000 stars at a distance of about 3200 light years. If a primordial black hole passed in front of one of these stars, the star would become temporarily brighter because of gravitational lensing. Griest et al. sifted through the available Kepler data and turned up zero events that matched their lensing criteria, which implies that moon-sized black holes (around 10-3 Earth masses) can’t make up all of the dark matter in the Milky Way. – Michael Schirber


More Announcements »

Subject Areas


Previous Synopsis

Atomic and Molecular Physics

A Quantum Quasicrystal

Read More »

Next Synopsis


An Electron Bucket Brigade

Read More »

Related Articles

Synopsis: A Crack in Earth’s Protective Shield

Synopsis: A Crack in Earth’s Protective Shield

Observations with India’s cosmic-ray telescope indicate that Earth’s magnetic field weakened during a 2015 geomagnetic storm, allowing cosmic rays to pass through. Read More »

Viewpoint: Inside a Plasma Shock
Plasma Physics

Viewpoint: Inside a Plasma Shock

Satellites orbiting near the edge of Earth’s magnetosphere have measured the velocities of ions accelerated by a shockwave with unprecedented temporal resolution. Read More »

Synopsis: Undoing the Effects of Gravitational Lensing

Synopsis: Undoing the Effects of Gravitational Lensing

Researchers demonstrate a method for removing gravitational lensing effects that distort maps of the cosmic microwave background. Read More »

More Articles