Synopsis

Colloidally Trapped Light Needles

Physics 6, s148
Colloidal suspensions can guide light over extended distances with minimal scattering.
W. Man et al., Phys. Rev. Lett. (2013)

Milk and other colloids—nano- and micron-sized particles suspended in a fluid—are well known for their light scattering properties. In general, the refractive index of colloidal particles is higher than that of the suspending fluid; the particles have a positive optical polarization. When the solutions are illuminated with light, radiation pressure and gradient forces draw the particles to the high-intensity light-beam center, enhancing scattering further. In Physical Review Letters, Weining Man at San Francisco State University, California, and colleagues present a new tunable colloidal system that doesn’t have these problems and can be used to propagate light over centimeter distances.

The colloidal system chosen by the group was polytetrafluoroethylene (PTFE) polymer nanoparticles suspended in a glycerin-water solution. The PTFE particles were negatively polarized—they had a lower refractive index than the solution—resulting in an expulsion of the particles from the incident light beam and the formation of a particle-rich tube around the beam. This tube acted as a light guide, allowing the light beam to pass through the fluid with diminished scattering.

To tune the system, Man et al. added small amounts of positively polarized polystyrene particles. In these mixtures, the polystyrene particles were attracted to the incident light beam, while the PTFE was repelled. As the concentration of polystyrene particles was changed, the distance over which the light propagated and was focused could be tuned with stable light needles forming. The group suggests a number of uses for these light filaments and needles, ranging from controlled, localized chemical reactions to microfluidics. – Katherine Thomas


Subject Areas

OpticsSoft Matter

Related Articles

Stiffening a Spring Made of Light
Optics

Stiffening a Spring Made of Light

Adding a nonlinear crystal to an optical spring can change the spring’s stiffness, a finding that could allow the use of such devices as gravitational-wave detectors. Read More »

Shielding Quantum Light in Space and Time
Quantum Physics

Shielding Quantum Light in Space and Time

A way to create single photons whose spatiotemporal shapes do not expand during propagation could limit information loss in future photonic quantum technologies. Read More »

A New Source for Quantum Light
Quantum Physics

A New Source for Quantum Light

A new device consisting of a semiconductor ring produces pairs of entangled photons that could be used in a photonic quantum processor. Read More »

More Articles