Synopsis: Detecting Molecules on a Chip

A new advance in molecule-on-a-chip technology allows molecules to be detected at the chip surface.
Synopsis figure
S. Marx et al., Phys. Rev. Lett. (2013)

Some labs-on-a-chip can perform experiments on single atoms or ions, but it’s only recently that researchers have figured out how to corral molecules onto a chip surface. A German research team has now made an important step in the development of molecule-on-a-chip technology with the demonstration of on-chip molecular detection. As described in Physical Review Letters, the technique, which involves ionizing molecules trapped on a 80-millimeter-long chip, can provide time-resolved spatial imaging of small molecular clouds.

Chips that manipulate cooled atoms or ions have performed a variety of tasks, such as quantum computations and gravitational sensing. Molecule chips, by contrast, have lagged behind, in part because molecules have a much richer, more complicated excitation spectrum that makes it difficult to cool and control them.

In recent work, the research group at the Fritz Haber Institute of the Max Planck Society, Germany, has developed methods for trapping and manipulating molecules on a chip. Now, Silvio Marx and his colleagues have added a new tool to their repertoire, with the first on-chip molecular detector. The team first loads a molecule chip with carbon monoxide (CO) molecules that have been cooled through supersonic expansion. Gold microelectrodes on the chip produce tiny traps, which each hold a cloud of about five CO molecules. A varying voltage on the electrodes moves the traps, so that the molecules can be smoothly decelerated and delivered to a laser beam that “snaps a picture” of the molecules by ionizing them. The resulting ion cloud is magnified by a system of ion lenses and imaged on a phosphor screen several centimeters above the chip. Compared to off-chip detection schemes, this method allows for the direct measurement of the spatial distribution of molecules and can capture short-lived quantum states. – Michael Schirber


More Announcements »

Subject Areas

Atomic and Molecular Physics

Previous Synopsis


Going Against the Flow

Read More »

Next Synopsis

Related Articles

Viewpoint: Cool Physics with Warm Ions
Atomic and Molecular Physics

Viewpoint: Cool Physics with Warm Ions

Ultrafast laser pulses can be used to control and characterize the quantum motion of a single trapped ion over 5 orders of magnitude in temperature. Read More »

Synopsis: The Quantum Hall Effect Leaves Flatland
Atomic and Molecular Physics

Synopsis: The Quantum Hall Effect Leaves Flatland

Cold atoms in an optical lattice with a synthetic extra dimension could be used to see the 4D version of the quantum Hall effect.   Read More »

Viewpoint: Emerging Quantum Order in an Expanding Gas
Condensed Matter Physics

Viewpoint: Emerging Quantum Order in an Expanding Gas

The spontaneous emergence of long-range quantum order, normally the preserve of low-temperature equilibrium states, has been observed in an expanding cloud of potassium atoms. Read More »

More Articles