Synopsis: Plant Power

A proposal for more efficient solar cells is inspired by the light-harvesting molecules in plants.
Synopsis figure
C. Creatore et al., Phys. Rev. Lett. (2013)

Taking a cue from how plants convert sunlight into useful energy, researchers have designed a model system consisting of three molecules exposed to light. They show that quantum-mechanical effects can significantly boost the photocurrent the molecules can generate compared to the case in which only classical effects come into play. The theoretical scheme, which is presented in Physical Review Letters, could be the basis for designing more efficient solar cells.

When light shines on a photocurrent-generating material, its energy is absorbed by electrons, which become unbound and can move freely. These free electrons can then contribute to an electrical current that does work. But the newly unbound electrons can also quickly “recombine” elsewhere, which is what limits the efficiency of most photoelectric materials.

The light-harvesting molecules in plants, on the other hand, can, under certain conditions, convert photons to electrons with near perfect efficiency, and experimental evidence suggests this high efficiency may be the result of quantum-mechanical effects. Celestino Creatore and his colleagues at the University of Cambridge in the UK considered how quantum effects could enhance the photocurrent in a simple system inspired by the pigment-protein molecules found in plants: two “donor” molecules, each of which has an energy level that absorbs photons, flanked by an “acceptor” molecule that can transfer the excited electron away. Creatore et al. have calculated that quantum effects can mix the two donor molecules when there is a dipole interaction between them, creating two new states: one very efficient absorber, and one “dark level,” which blocks the path by which the electrons can recombine. The current generated by exposing this new configuration to light can be 35% higher than expected from classical physics alone. – Jessica Thomas


More Announcements »

Subject Areas

Energy Research

Previous Synopsis

Next Synopsis

Related Articles

Synopsis: Good News for Stellarators
Energy Research

Synopsis: Good News for Stellarators

New simulations of an alternate fusion reactor design reveal that it can be stable against turbulent fluctuations. Read More »

Focus: New Form of Carbon Stores Lots of Gas

Focus: New Form of Carbon Stores Lots of Gas

Carbon honeycomb, a new carbon structure, could store large amounts of hydrogen gas, which may benefit fuel cell technology. Read More »

Synopsis: Putting Quantum Systems to Work
Quantum Physics

Synopsis: Putting Quantum Systems to Work

Quantum effects such as coherence and entanglement increase a system’s ability to store energy. Read More »

More Articles