Synopsis: Better than Diffraction

A new microscopy method allows the imaging of nanostructures that are smaller than one eighth of the wavelength of the light used to illuminate them.
Synopsis figure
Courtesy Tung-Yu Su/National Taiwan University

Optical microscopes are widely used in all areas of science to image small objects. However, because of their design and the limits of diffraction, the smallest features that conventional microscopes can image are about half the wavelength of the light they use. Writing in Physical Review Letters, Shi-Wei Chu, at the National Taiwan University, and colleagues report a new technique that overcomes this resolution limit and can image nanostructures 70 nanometers in size—less than one eighth of the wavelength of the visible light used in their setup.

The group fitted a standard optical microscope with a laser and used it to image a sample containing gold nanoparticles. The laser wavelength was chosen so that it was resonant with the sharp plasmonic resonance exhibited by the particles. As a consequence, the laser light experienced particularly strong scattering. By adjusting the intensity of the laser, the researchers were able to reach, for the first time, a regime in which the light scattered from an isolated particle was saturated. With proper image processing techniques, such saturation behavior could be exploited to deliver sharper images of the plasmonic nanostructures.

While this method only works for gold nanoparticles, the particles can be selectively embedded into other materials, allowing them to be imaged. Although other recently demonstrated techniques, mostly based on fluorescence microscopy, allow comparable or even better resolution, this gold-nanoparticle method has an important advantage: samples can be imaged repeatedly without damage and with no loss in scattering intensity that, in fluorescence-based schemes, inevitably occur because of the bleaching of the fluorescing molecules. – Katherine Wright


Features

More Features »

Announcements

More Announcements »

Subject Areas

OpticsNanophysics

Previous Synopsis

Atomic and Molecular Physics

Fermi Gas Goes into Deep Degeneracy

Read More »

Next Synopsis

Related Articles

Synopsis: Straining After Quantum Dots
Semiconductor Physics

Synopsis: Straining After Quantum Dots

The positions of quantum dots inside a microstructure can be determined by monitoring how an applied strain affects the dots’ photoluminescence.   Read More »

Viewpoint: A New Twist on Relativistic Electron Vortices
Nanophysics

Viewpoint: A New Twist on Relativistic Electron Vortices

Two studies explore the properties of vortices formed by electrons that travel at relativistic speeds. Read More »

Synopsis: A Neat Way to Slow Down Light
Optics

Synopsis: A Neat Way to Slow Down Light

A new technique slows down light in a crystal by simply shining a laser on it and varying an applied voltage. Read More »

More Articles