Synopsis

Fighting for Attention

Physics 7, s14
Competition for attention among users can bring social networks close to the critical point of a phase transition.
Jonathan A. Ward/University of Leeds

A “meme” is an idea, style, or behavior that spreads within society; examples include songs, catch phrases, Internet videos, and fashions. The name was coined by British evolutionary biologist Richard Dawkins to suggest the analogy with a gene: a meme can replicate, mutate, and evolve, competing for success. But what mechanisms determine the popularity of a meme? Reporting in Physical Review Letters, James Gleeson at the University of Limerick, Ireland, and co-workers present a model that describes how memes spread and compete in a social network.

Gleeson et al. develop an analytical framework applicable to a social network like Twitter, composed of a set of nodes (users), each with a number of followers. At a given time, each user (re)tweets a meme of interest to his followers, which may boost its popularity. The formalism, inspired by epidemic models for contagious diseases, allows the study of how memes compete with each other for the limited and fluctuating resource of user attention, leading to some memes becoming popular and others remaining completely ignored.

The key result of their analysis is that the competition between memes turns the social network into a so-called critical system, i.e., a system close to the critical point of a phase transition. In such a state, minor disturbances lead to avalanches of events that drive the system to a new phase, e.g., one in which certain memes go viral. As expected for a critical state, the authors show that many statistical properties exhibit certain regularities. In particular, they are able to predict distributions of popularity following power laws whose exponents are close to empirical values. – Matteo Rini


Subject Areas

Nonlinear DynamicsInterdisciplinary Physics

Related Articles

Drug-Resistance Mutations Find Strength in Small Numbers
Interdisciplinary Physics

Drug-Resistance Mutations Find Strength in Small Numbers

A new model, vetted by experiments on lung cancer cells, may help to explain how cancer and other diseases accumulate drug-resistance mutations that can compromise the effectiveness of treatments. Read More »

Alleviating the Stress of Finding a PhD Advisor
Interdisciplinary Physics

Alleviating the Stress of Finding a PhD Advisor

At many US universities, no formal procedure exists to help physics students pick a PhD project and a supervisor. Researchers argue it’s time for that to change. Read More »

The Neuron vs the Synapse: Which One Is in the Driving Seat?
Complex Systems

The Neuron vs the Synapse: Which One Is in the Driving Seat?

A new theoretical framework for plastic neural networks predicts dynamical regimes where synapses rather than neurons primarily drive the network’s behavior, leading to an alternative candidate mechanism for working memory in the brain. Read More »

More Articles