Synopsis: Cyberattack by Breaking and Entering

A new study shows that messages sent by secure quantum communication methods can be intercepted and faked by attacks that damage system components.

Quantum cryptography promises secure communication by alerting users when their data has been spied on. But an eavesdropper might be able to bypass this security by tampering not with the data, but with the data-reading equipment. An example of this strong-arm tactic is reported in Physical Review Letters, in which high-powered laser light is used to damage photo-detectors, thus allowing a fake signal to be swapped into the communication line.

A common way for two parties, call them Alice and Bob, to share sensitive information is with a random encryption key. The problem is how to send the key without having it intercepted by an eavesdropper, Eve. One solution is quantum key distribution, in which Alice and Bob share, for example, entangled photon pairs. If Eve intercepts the transmission, she’ll irrevocably destroy the entanglement. Alice and Bob can recognize such a security breach by comparing a subset of their separate photon measurements.

However, Alice and Bob have to allow for a certain amount of errors, or mismatches, between their two measurements due to unavoidable imperfections in their equipment. Audun Nystad Bugge of the Norwegian University of Science and Technology in Trondheim, Norway, and colleagues realized that a change in severity of equipment imperfections could open the door to hacking. In tests, the researchers showed that high-powered laser illumination could partly cripple a commonly used photodiode. If Eve mounted such a laser attack on Bob’s optical system, she could then intercept Alice’s transmission and replace it with a well-crafted fake signal that Bob’s damaged system could no longer identify as phony. To counter this threat, the authors propose more frequent instrument verification procedures. – Michael Schirber


Announcements

More Announcements »

Subject Areas

Quantum Information

Previous Synopsis

Quantum Information

Quantum Legos

Read More »

Next Synopsis

Related Articles

Viewpoint: Photon Qubit is Made of Two Colors
Optics

Viewpoint: Photon Qubit is Made of Two Colors

Single particles of light can be prepared in a quantum superposition of two different colors, an achievement that could prove useful for quantum information processing. Read More »

Synopsis: Ten Photons in a Tangle
Quantum Information

Synopsis: Ten Photons in a Tangle

An entangled polarization state of ten photons sets a new record for multiphoton entanglement. Read More »

Synopsis: Quantum States Made with a Pluck
Quantum Information

Synopsis: Quantum States Made with a Pluck

A proposed method of generating phonon states for quantum applications uses a single electron trapped in a suspended carbon nanotube. Read More »

More Articles