Synopsis

A Quantum Microscope at High NOON

Physics 7, s31
A special quantum entanglement called the NOON state enables microscopy at very low light levels.
Y. Israel et al. Phys. Rev. Lett. (2014)

At low light levels, microscopic imaging systems suffer from noise as the few desired photons compete with random background. One would normally just turn up the illumination, but this can alter or even damage some delicate samples. A research team led by Yaron Silberberg at the Weizmann Institute of Science in Israel has found one possible way around this with specially constructed entangled quantum states. In a paper in Physical Review Letters, the researchers report a quantum microscope that produces relatively superior images compared to a conventional microscope at extremely low light level.

The researchers used what are known as NOON states, which have two quantum modes (such as vertical and horizontal polarization). In their microscope, two states are formed—one with N photons in one mode and the other mode empty ( |N0), and the other state with the situation reversed ( |0N). These states are entangled to create the NOON state. And because the image quantum noise goes approximately as 1N, so-called “high” NOON states with N>1 are most desirable.

To assess the improvement offered by this proof-of-principle system, the authors used a piece of quartz as a sample and used their microscope to create a 2D image of the phase shift between the two polarization modes caused by its birefringence. The NOON states were loaded with either N=2 or N=3 photons, and the overall NOON state illumination was limited to 50 photons per pixel (by contrast, a typical digital camera captures tens of thousands of photons per pixel). The noise was reduced to near the ultimate Heisenberg quantum limit. The authors note that this is only a test—a practical system is not here yet because NOON states are hard to create and suffer large photon losses. – David Voss


Subject Areas

Quantum Information

Related Articles

Enhanced Interactions Using Quantum Squeezing
Quantum Information

Enhanced Interactions Using Quantum Squeezing

A quantum squeezing method can enhance interactions between quantum systems, even in the absence of precise knowledge of the system parameters. Read More »

How to Speed up a Quantum Network
Quantum Information

How to Speed up a Quantum Network

Sending photons to a remote site in groups should allow quantum links to be more rapidly established across future quantum networks than if photons are sent one at a time. Read More »

Erasure Qubits for Abridged Error Correction
Quantum Information

Erasure Qubits for Abridged Error Correction

Researchers have realized a recently proposed qubit in which the errors mostly involve erasure of the qubit state, an advance that could help simplify the architecture of fault-tolerant quantum computers. Read More »

More Articles