Synopsis: Why Heat Moves Molecules in Solution

Researchers have developed a complete theory for thermophoresis—the process by which molecules in a liquid move under the influence of temperature—and tested it under a wide range of conditions.
Synopsis figure
M. Reichl et al., Phys. Rev. Lett. (2014)

Charged molecules in water move from warmer to colder regions, an effect called thermophoresis that is part of a technique that allows researchers to monitor the binding of candidate drugs to proteins. Despite the technique’s popularity, no one has come up with a complete theory of thermophoresis. Now, Dieter Braun of the Ludwig Maximilian University of Munich, Germany, and colleagues have developed a theory that includes previously neglected contributions to the effect, as they report in Physical Review Letters.

The new theory builds on the so-called capacitor model, previously developed by Braun and other colleagues, in which a charged macromolecule such as a wadded-up DNA strand acts like a spherical capacitor that drifts toward cooler regions to reduce its electric field energy. But the capacitor model alone could not account for some experiments. Braun and his colleagues have now added three additional contributions to their thermophoresis theory and tested it under a wider range of conditions. The first new contribution results from a difference in the temperature-induced motions of positive and negative ions in the solution, which leads to a charge imbalance that generates a weak electric field. The second contribution represents the weak dependence of the diffusion constant on temperature, and the third contribution comprises various non-ionic effects, which the researchers model with a simple empirical formula.

The team measured thermophoresis of fluorescently labeled DNA and RNA strands of various lengths and with a range of ions in the solution. Their model correctly predicted the temperature and concentration dependence of the effect, including nontrivial phenomena, such as a peak in the electrophoresis temperature dependence. – David Ehrenstein


Announcements

More Announcements »

Subject Areas

Biological PhysicsPhysical Chemistry

Previous Synopsis

Next Synopsis

Related Articles

Viewpoint: Putting Bounds on Biochemical Noise
Biological Physics

Viewpoint: Putting Bounds on Biochemical Noise

Biochemical networks are often poorly characterized, but researchers can still derive limits on the level of the random variations or noise in different network components. Read More »

Focus: Bumblebees In Turbulence
Biological Physics

Focus: Bumblebees In Turbulence

A simulation of a flying bee shows that insects don’t expend extra energy to maintain lift in turbulent air flow. Read More »

Viewpoint: A One-Sided View of Acoustic Traps
Biological Physics

Viewpoint: A One-Sided View of Acoustic Traps

Using new techniques for shaping sound waves from a single source, researchers have made acoustic tweezers that move particles around in three dimensions. Read More »

More Articles