Synopsis: Gamma-Ray Bursts Guide Search for Gravitational Waves

A five-year search for gravitational waves by two large-scale experiments results in no detection—but suggests an observation may soon be within reach.
Synopsis figure
NASA/Swift/Mary Pat Hrybyk-Keith and John Jones

Gravitational waves (GWs)—ripples in spacetime predicted by Einstein—have never been directly observed. Detection is complicated by the fact that GWs would have an extremely small effect on detectors and that their most promising sources (such as black holes or neutron-star binaries) are so far away from Earth that the amplitude of the waves would be extremely small by the time they reach us.

To tackle this challenge, researchers have developed ultrasensitive laser-based interferometers that could detect the passage of a GW by measuring tiny length differences between two giant (kilometer-scale) perpendicular interferometer arms. Since simultaneous measurements from several detectors in far-away locations is the best way to rule out false signals, two large international collaborations—the Laser Interferometer Gravitational-Wave Observatory (LIGO), with observatories in Louisiana and Washington, and Virgo, running an interferometer in Italy—have teamed up for a search. The researchers synchronized their searches with the arrival time of gamma-ray bursts (GRBs), which are associated with the same astronomical events thought to release gravitational waves. GRB data were provided by the InterPlanetary Network of satellites and other spacecraft.

Starting in 2005, the two teams spent five years studying 508 GRBs—the most extensive GRB-based search to date, with a twofold improvement in signal statistics compared to previous searches. But within the sensitivity of their detectors, they saw no gravitational waves: according to their data, the observed GRB sources were too distant to generate detectable GWs. But the analysis of their findings leaves room for hope: with GW sources at comparable distances, planned improvements to the LIGO and Virgo detectors will give the researchers a chance of spotting the elusive waves when the collaborations begin taking data again in 2015. – Matteo Rini


More Announcements »

Subject Areas


Previous Synopsis

Related Articles

Synopsis: Testing Relativity with Planetary Motion  
Particles and Fields

Synopsis: Testing Relativity with Planetary Motion  

Observations of the orbital motion of planets around the Sun allow researchers to place stringent limits on Lorentz symmetry violations. Read More »

Synopsis: Entangled Mirrors Could “Reflect” Quantum Gravity
Quantum Physics

Synopsis: Entangled Mirrors Could “Reflect” Quantum Gravity

A proposed interferometry experiment could test nonrelativistic quantum gravity theories by entangling two mirrors weighing as much as apples. Read More »

Focus: Energy Boost from Black Holes

Focus: Energy Boost from Black Holes

Particles orbiting near a spinning black hole might collide and get ejected with much more energy than previous calculations showed. Read More »

More Articles