Synopsis

Gluons Chip in for Proton Spin

Physics 7, s78
A new analysis of high-energy data shows that gluons may provide some of the proton’s missing spin.
Brookhaven National Laboratory

The proton has a spin that comes from its constituent quarks and gluons. Experiments in the 1980s found—unexpectedly—that the contribution from the intrinsic spins of the quarks was small. This so-called “proton spin crisis” remains unresolved, but a new comprehensive analysis of proton scattering data, reported in Physical Review Letters, finds the first clear evidence that the gluon spin polarization is not zero, suggesting that gluons may have a significant role in the spin of the proton.

The proton is a spin 1/2 particle made up of three quarks held together by gluons that carry the strong force. The quarks have spin 1/2, so physicists originally assumed that two of the quarks were in opposite alignment (cancelling their spin), leaving one unpaired quark to give the proton spin. However, measurements of muon-proton collisions found only a quarter of the proton’s spin comes from quark spins. The rest has to come from gluon spins and/or the orbital motion of quarks and gluons inside the proton.

To determine the contribution from gluons, which have spin 1, physicists measure the probability that a gluon with a particular momentum is aligned, or polarized, with respect to the proton spin. Earlier observations of proton-proton collisions at the Relativistic Heavy Ion Collider (RHIC) found the gluon polarization was close to zero for moderate momenta values. However, using more recent RHIC results, Daniel de Florian of the University of Buenos Aires, Argentina, and his colleagues find a nonzero gluon polarization. More data is still needed at low momentum, but the current best fit suggests that as much as half of the proton’s spin comes from gluon spins. — Michael Schirber


Subject Areas

Particles and Fields

Related Articles

The Most Precise Value of the Top-Quark Mass to Date
Particles and Fields

The Most Precise Value of the Top-Quark Mass to Date

Researchers at CERN have significantly increased the precision of the measured value of the top-quark mass, a key input for making standard-model calculations. Read More »

One Field to Rule Them All
Cosmology

One Field to Rule Them All

Theorists explain why cosmic inflation might appear to be driven by a single inflaton field, even if it had actually been driven by two or more such fields. Read More »

Colorful Primordial Black Holes
Astrophysics

Colorful Primordial Black Holes

Some ultralight black holes that formed soon after the big bang might have been exotic objects with a net “color charge” that left potentially observable signatures. Read More »

More Articles