Synopsis: Smarter Pulse Shaping for Fiber Optics

Researchers propose a new way to eliminate the signal distortions in optical fibers that are caused by nonlinear effects.

To boost the capacity of optical fibers—the glass cables that carry digital information to more than two billion internet users—engineers encode information on many wavelengths. But this technology, known as wavelength division multiplexing, is limited in how fast it can send information because of interference between signals. Writing in Physical Review Letters, researchers propose a way to eliminate this cross talk and potentially raise the rate at which future fibers transmit data.

The new approach tackles the problem of optical nonlinearity in fibers, in which an intense light pulse alters the fiber’s index of refraction. Nonlinearity causes interactions between pulses carried at different wavelengths, producing distortions that lead to errors. Since the effects are mathematically complex, they are difficult to correct when the pulses arrive at their destination. And although optical fibers are only weakly nonlinear, the effect can be significant when pulses are transmitted at distances of several-hundred-kilometers or at rates in excess of 10 gigabits/second.

Jaroslaw Prilepsky at Aston University, UK, and his colleagues modeled the passage of light through an optical fiber using the nonlinear Schrödinger equation and found a set of signal waveforms that, according to this equation, behave like sinusoidal waves in a fiber with no nonlinearities. In principle, any light signal can be generated as sums of these specially shaped pulses. As a proof of concept, the authors simulated the transmission and sending of a sequence of signals along a 2000-kilometer fiber using their new strategy and showed that the signals arrived without distortion. – Jessica Thomas


Features

More Features »

Announcements

More Announcements »

Subject Areas

Optics

Next Synopsis

Particles and Fields

Gluons Chip in for Proton Spin

Read More »

Related Articles

Synopsis: A Neat Way to Slow Down Light
Optics

Synopsis: A Neat Way to Slow Down Light

A new technique slows down light in a crystal by simply shining a laser on it and varying an applied voltage. Read More »

Focus: Reversing Light Scattering with a Handful of Photons
Optics

Focus: Reversing Light Scattering with a Handful of Photons

When a beam of light is sent through a nearly opaque material, the scattered light that emerges can be unscrambled even with relatively few photons detected. Read More »

Focus: Atomic Impersonator
Optics

Focus: Atomic Impersonator

Calculations show that a carefully engineered laser pulse can induce an atom to emit light as if it were a different atom. Read More »

More Articles