Synopsis: Simple Molecules for Accurate Clocks

Researchers propose using one-electron molecules for a new class of ultrahigh-precision clocks.
Synopsis figure
S. Schiller et al., Phys. Rev. Lett (2014)

Are fundamental constants really constant in time and space? Answering this question requires measurements of quantities such as the electron-proton mass ratio with extraordinary accuracy. One method is to look for small changes in molecular vibrational frequencies, but improved measurements will require a new generation of clocks. The cesium clock, with an uncertainty of few parts in 1016, is the best atomic clock suitable for such tests. Writing in Physical Review Letters, Stephan Schiller of the Heinrich Heine University Düsseldorf, Germany, and colleagues propose that clocks based on some of the simplest molecules [molecular hydrogen (H2+) and hydrogen-deuterium (HD+)] may allow researchers to eventually achieve uncertainties at the 1×10-17 level, outperforming existing schemes based on atomic transitions.

One-electron hydrogenlike molecules have a key advantage: their properties can be calculated with high accuracy, allowing an optimal selection of molecular transition frequencies. And what may seem like a disadvantage—the complexity of a molecule versus an atom—can actually improve accuracy: a subset of the many molecular transition lines can exhibit very low sensitivity to external electric and magnetic fields. The researchers propose an additional trick: a “composite frequency” method in which a clock’s frequency results from the weighted sum of multiples of these “robust” frequencies. Since the shifts of these transitions due to perturbations have different values, they can cancel out to yield a composite frequency with much-improved accuracy.

The authors calculated that a multiple-transition clock based on HD+ and H2+ would feature a 60-fold and 3-fold accuracy improvement compared to a single-transition clock, leading to an uncertainty of 5×10-18 and less than 2×10-17, respectively. The gain comes at the cost of additional complexity due to the multiple spectroscopic sources needed for the clock’s functioning, but preliminary experiments in the authors’ labs show show setting up such schemes is technologically feasible. – David Voss


More Announcements »

Subject Areas

Atomic and Molecular Physics

Previous Synopsis


Sound Switch

Read More »

Next Synopsis

Related Articles

Viewpoint: Cool Physics with Warm Ions
Atomic and Molecular Physics

Viewpoint: Cool Physics with Warm Ions

Ultrafast laser pulses can be used to control and characterize the quantum motion of a single trapped ion over 5 orders of magnitude in temperature. Read More »

Synopsis: The Quantum Hall Effect Leaves Flatland
Atomic and Molecular Physics

Synopsis: The Quantum Hall Effect Leaves Flatland

Cold atoms in an optical lattice with a synthetic extra dimension could be used to see the 4D version of the quantum Hall effect.   Read More »

Viewpoint: Emerging Quantum Order in an Expanding Gas
Condensed Matter Physics

Viewpoint: Emerging Quantum Order in an Expanding Gas

The spontaneous emergence of long-range quantum order, normally the preserve of low-temperature equilibrium states, has been observed in an expanding cloud of potassium atoms. Read More »

More Articles