Synopsis: Blowing Bubbles on the Nanoscale

Scientists have now developed a new controlled method to superheat liquids and induce the formation of bubbles in a nanoscale container.

Whether they form in ice-cold champagne or hot molten iron, bubbles represent a nucleation phenomenon that (in the case of the hot iron) can lead to a phase transition from a liquid to a vapor. Understanding how the bubble nucleation is affected by confinement could be useful for applications in chemistry, microfluidics, and electronics, as well as fundamental studies of phase transitions. Jene Golovchenko, at Harvard University, and collaborators now report a way to reproducibly create bubbles in liquid confined within a solid-state nanopore—the smallest container in which bubble formation has been observed.

Solid-state nanopores are tiny holes punctured into an insulating membrane. Golovchenko and his colleagues immersed a silicon-nitride membrane containing a nanopore in a sodium-chloride solution and applied a modest voltage across the membrane to drive an ionic current through the pore. The current rapidly heated the liquid in the nanopore to temperatures 200C above its normal boiling point, causing single bubbles of vapor to homogeneously nucleate at the center of the pore.

The researchers used both electronic and optical probes to monitor the bubbles’ nucleation, growth, and collapse. The bubbles were excited in streams, with each bubble lasting around 16 nanoseconds before the next formed 120 nanoseconds later, consistent with models of how heat drives bubble formation on the nanoscale. Inducing bubble nucleation in a controlled manner may be useful for applications such as building bubble “lenses” to bend light and achieve super-resolution imaging. – Katherine Kornei


Announcements

More Announcements »

Subject Areas

Fluid Dynamics

Previous Synopsis

Atomic and Molecular Physics

Simple Molecules for Accurate Clocks

Read More »

Next Synopsis

Atomic and Molecular Physics

Bose-Einstein Condensates for Gamma-Ray Lasers

Read More »

Related Articles

Focus: Superfluid Increases Force of Laser Light
Fluid Dynamics

Focus: Superfluid Increases Force of Laser Light

Shining a laser onto a microscopic object coated with a superfluid film induces flows that can generate a controlled force. Read More »

Synopsis: Whisky-Inspired Coatings
Fluid Dynamics

Synopsis: Whisky-Inspired Coatings

As a whisky drop dries, a combination of molecules in the liquid ensure a spatially uniform deposition—a finding that could inspire coating technologies. Read More »

Focus: Particles Stratify by Size in Thin Films
Soft Matter

Focus: Particles Stratify by Size in Thin Films

Small particles suspended in a liquid separate out by size as the liquid evaporates, an effect that could lead to techniques for making layered structures. Read More »

More Articles