Synopsis: Zeeman Effect Induced by Light Waves

The magnetic field of intense visible light should have a major effect on the spectra of plasmas made from a wide range of elements.
Synopsis figure
E. Stambulchik and Y. Maron, Phys. Rev. Lett. (2014)

The magnetic field of a light wave has a much weaker effect on matter than its electric field, so theorists rarely worry about magnetic effects of light on atoms. But a team writing in Physical Review Letters predicts that hitting a wide range of single-electron ions with high-intensity laser pulses should reveal magnetic effects in the spectra. The result, which could have been calculated decades ago, could lead to a new, more direct technique to measure the intensity of powerful research lasers.

Ordinarily, the Zeeman effect—the splitting of atomic energy levels in a magnetic field—is assumed to be unobservable as an effect of electromagnetic waves, but Evgeny Stambulchik and Yitzhak Maron of the Weizmann Institute in Israel now suggest otherwise. They performed a detailed analysis of a light wave interacting with an atom containing a single electron making transitions from an excited state to the ground state, using both analytical techniques and simulations. They found that in a hot krypton plasma, for example, there is a dramatic magnetic effect on the spectrum, especially with a light source with intensity of more than 1020 watts per square centimeter.

Such intensities are available at a growing number of facilities worldwide, and Stambulchik and Maron say that the long-ignored effect could in principle be used to spectroscopically measure the intensity of such lasers without disrupting ongoing experiments. (Currently these facilities must reconfigure for such tests and can’t do them at full power.) The authors also foresee implications for the interpretation of spectra emitted from laser-plasma interactions. – David Ehrenstein


More Announcements »

Subject Areas

Atomic and Molecular Physics

Previous Synopsis

Next Synopsis

Materials Science

Self-Replicating Cracks

Read More »

Related Articles

Viewpoint: Cool Physics with Warm Ions
Atomic and Molecular Physics

Viewpoint: Cool Physics with Warm Ions

Ultrafast laser pulses can be used to control and characterize the quantum motion of a single trapped ion over 5 orders of magnitude in temperature. Read More »

Synopsis: The Quantum Hall Effect Leaves Flatland
Atomic and Molecular Physics

Synopsis: The Quantum Hall Effect Leaves Flatland

Cold atoms in an optical lattice with a synthetic extra dimension could be used to see the 4D version of the quantum Hall effect.   Read More »

Viewpoint: Emerging Quantum Order in an Expanding Gas
Condensed Matter Physics

Viewpoint: Emerging Quantum Order in an Expanding Gas

The spontaneous emergence of long-range quantum order, normally the preserve of low-temperature equilibrium states, has been observed in an expanding cloud of potassium atoms. Read More »

More Articles