Synopsis: Better than Bees

Fractal structures based on hexagonal honeycombs provide a route to create low-weight materials with tunable properties.
Synopsis figure
R. Oftadeh et al., Phys. Rev. Lett. (2014)

Hexagonal honeycomb structures, such as those found in beehives, are well known to exhibit remarkable mechanical properties, such as extremely high stiffness, relative to their very low density. Writing in Physical Review Letters, Ashkan Vaziri from Northeastern University, Boston, and colleagues, show that the mechanical properties of these uniform honeycomb structures could be even better if different levels of hierarchy are added in to form fractal materials. The research provides an easy route to enhance and tune the performance of the material by changing the details of its hexagonal structure, something that is becoming easier and easier to achieve with the advent of 3D printers.

To form the materials, Vaziri and his colleagues started out with a simple three-edged vertex network. Each three-edged vertex was then replaced with a hexagon. This process was repeated with smaller and smaller hexagons being added until the desired hierarchical order was achieved. The density was tuned by changing the thickness of the connecting walls. Guided by simulations, experiments were carried out for a set of 3D printed versions of the materials with varying density and hierarchies.

The authors studied how mechanical properties such as the elastic modulus (the material’s resistance to deformation) depended on various parameters. They found that, for a given density, the elastic modulus increased significantly with increasing hierarchical order, up to a point of saturation. Surprisingly, for a fixed hierarchy level, the modulus also increased with decreasing density. The resulting materials had moduli over 20 times greater than hierarchy-free honeycomb structures. Using these results, the authors were able to make predictions for an optimal structure—in terms of material performance—needed to maximize strength at a specified material density. – Katherine Wright


Announcements

More Announcements »

Subject Areas

Materials Science

Previous Synopsis

Next Synopsis

Related Articles

Focus: New Form of Carbon Stores Lots of Gas
Graphene

Focus: New Form of Carbon Stores Lots of Gas

Carbon honeycomb, a new carbon structure, could store large amounts of hydrogen gas, which may benefit fuel cell technology. Read More »

Synopsis: Trees Crumbling in the Wind
Materials Science

Synopsis: Trees Crumbling in the Wind

Lab experiments with wooden rods help explain why all trees—irrespective of size or species—break when battered by wind blowing at the same critical speed. Read More »

Synopsis: Growing Crystals in Macrosteps
Materials Science

Synopsis: Growing Crystals in Macrosteps

Simulations describe how crystals are able to grow past impurities by forming multilayer steps. Read More »

More Articles