Synopsis

Simon Says Speed Up

Physics 7, s131
A function finder called Simon’s algorithm has been experimentally tested on a prototype quantum computer for the first time.
M. Tame/University of KwaZulu-Natal

Many quantum algorithms are expected to solve problems faster than their classical equivalents, but few have been tested experimentally. Now Mark Tame, from the University of KwaZulu-Natal in South Africa, and his colleagues have used a prototype quantum computer to run the quantum version of Simon’s algorithm—historically, the first algorithm predicted to run exponentially faster on a quantum computer than a classical one. Although Simon’s algorithm doesn’t have practical applications, it could provide a useful way to test the capabilities of future quantum computers.

Simon’s algorithm determines the properties of a “black-box” function f(x), figuring out if a function is 1 to 1 [each input x has a different output f(x)], or 2 to 1 [two inputs x1 and x2 have the same output f(x1)=f(x2)]. The algorithm works out which by querying the black box and monitoring the output. If it’s a 2 to 1 function, the algorithm also finds the difference between x1 and x2, known as the period. Classically, the number of times the black box has to be queried to deduce the function is exponentially greater than the number of times it would take a quantum system.

Tame and collaborators ran a quantum version of this algorithm on an optical quantum computer, in which entangled photons served as qubits. Their setup, which utilizes a total of six qubits, solved Simon’s problem in three quarters of the steps that it would take a classical computer to solve the equivalent classical black box function. Assuming theoretical predictions about Simon’s algorithm’s performance are correct, this gain in efficiency will increase exponentially on computers with more qubits.

This research is published in Physical Review Letters.

–Katherine Wright


Subject Areas

Quantum Information

Related Articles

How to Move Multiple Ions in Two Dimensions
Quantum Information

How to Move Multiple Ions in Two Dimensions

A scheme that moves electromagnetically trapped ions around a 2D array of sites could aid development of scaled-up ion-based quantum computing. Read More »

Can Classical Worlds Emerge from Parallel Quantum Universes?
Quantum Information

Can Classical Worlds Emerge from Parallel Quantum Universes?

Simulations deliver hints on how the multiverse produced according to the many-world interpretation of quantum mechanics might be compatible with our stable, classical Universe. Read More »

Qubit Readout Mystery Solved
Quantum Information

Qubit Readout Mystery Solved

Theoretical work provides a long-awaited explanation for why measurements of qubits in superconducting quantum computers are less accurate than expected. Read More »

More Articles