Synopsis

Observing the Precession of a Single Spin-5/2 Ion

Physics 7, s137
Researchers observed the precession of an individual spin-5/2 ion in a quantum dot, a system that could store multiple bits for quantum computing.
M. Goryca et al., Phys. Rev. Lett. (2014)

Large-spin magnetic particles, both ions and molecules, embedded in solids, could perform more complex functions in quantum information storage and processing than spin-1/2 or spin-3/2 particles, but they are harder to observe in isolation. Now Mateusz Goryca of the University of Warsaw, Poland, and his colleagues have observed the coherent precession in a magnetic field of a single spin-5/2 particle—a Mn2+ ion in a quantum dot.

The team studied a blob of CdTe, called a quantum dot, tens of nanometers in diameter, containing a single Mn2+ ion. To probe the ion’s spin, they used two identical laser pulses separated by a variable delay to create two excitons—short-lived, electron-hole pairs—that interacted with the ion. The photon frequency was chosen to excite the excitons to the lowest energy level of the exciton-ion complex. The first exciton started the ion precessing in the external magnetic field before decaying. For the second pulse, the team measured the probability that an exciton could be created by counting the fraction of times that the pulse resulted in photon emission from an exciton decay. This probability indicated the ion’s time-dependent probability of occupying the lowest energy level.

The team found that the occupation of the ion’s lowest energy state oscillated with time as expected for precession of a single, coherent spin. According to the authors, the results show that the quantum state of the ion can be “read” in detail, which is the first step in demonstrating it as a multi-quantum-bit object. Now the team is working on manipulating the ion’s spin state, equivalent to “writing” quantum bits.

This research is published in Physical Review Letters.

–David Ehrenstein


Subject Areas

Quantum InformationMagnetism

Related Articles

Measuring Qubits with “Time Travel” Protocol
Quantum Information

Measuring Qubits with “Time Travel” Protocol

Quantum sensing can benefit from entanglement protocols that can be interpreted as allowing qubits to go backward in time to choose an optimal initial state. Read More »

Mechanical Coupling to Spin Qubits
Quantum Information

Mechanical Coupling to Spin Qubits

A vibrating nanobeam could be used to share information between distant solid-state spin qubits, potentially allowing use of these qubits in complex computations. Read More »

A New Way to Transport Spin Currents
Magnetism

A New Way to Transport Spin Currents

Spin currents carried by magnetic waves called magnons can be sent across a device without using insulating magnets—a result that could lead to spintronic devices compatible with silicon electronics. Read More »

More Articles