Synopsis: Work in the Quantum World

A new method of measuring work in a quantum-mechanical setting provides a way to evaluate the thermodynamics of small, fluctuating systems.

Work in its simplest form is the product of an applied force and the distance along some particular trajectory. The same definition does not apply in quantum mechanics, however, since quantum objects do not travel along single trajectories. Quantum work has instead been defined as an energy difference, requiring two separate measurements. But researchers have now devised a way of assessing quantum work with a single measurement. The trick is in introducing a second system that acts like a quantum “punch clock,” keeping track of the work done on the original system.

The desire to define quantum work arose partly from the development of tiny devices, like nanoscale engines and refrigerators, in which quantum effects can dominate. The fluctuations can be so large in such systems that thermal equilibrium no longer strictly applies. As a result, basic thermodynamic properties, such as entropy and free energy, require new formulations that are based on the work necessary to drive the system between two states.

Physicists have typically defined quantum work as the difference between the final and initial energies of a system. This requires measuring the system twice, at two different times, destroying any coherences that may exist in the initial state. Augusto Roncaglia and his colleagues from the University of Buenos Aires in Argentina show how work can be determined from a single measurement. Their strategy is to entangle the system of interest with a second auxiliary system that keeps a record of the work. The two systems evolve in time together, and the auxiliary system is then measured. The team showed theoretically that this sequence of operations could be performed with an atomic beam or with qubits. This new framework could help physicists understand the role that quantum coherence may play in the behavior of nanoscale machines.

This research is published in Physical Review Letters.

– Michael Schirber


Announcements

More Announcements »

Subject Areas

Quantum Physics

Previous Synopsis

Biological Physics

How Oxygen Kindles Fireflies

Read More »

Next Synopsis

Related Articles

Focus: Two Atoms Can Jointly Absorb One Photon
Quantum Physics

Focus: Two Atoms Can Jointly Absorb One Photon

Theorists show that two atoms in an optical cavity can absorb the same photon. Read More »

Viewpoint: Squeezed Light Reengineers Resonance Fluorescence
Atomic and Molecular Physics

Viewpoint: Squeezed Light Reengineers Resonance Fluorescence

By bathing a superconducting qubit in squeezed light, researchers have been able to confirm a decades-old prediction for the resulting phase-dependent spectrum of resonance fluorescence. Read More »

Viewpoint: Many-Body Localization Needs a Bath
Quantum Physics

Viewpoint: Many-Body Localization Needs a Bath

Theoretical work proves that interacting quantum systems can enter a many-body localized phase in which they cannot reach thermal equilibrium without an external bath. Read More »

More Articles