Synopsis

Particle Weighing in the Early Universe

Physics 8, s21
The spectrum of a distant quasar reveals no sign of changes in the mass ratio of the proton and the electron over 12 billion years, constraining dark energy theories.
Y. Beletsky (LCO)/ESO

Certain models predict that the dark energy that accelerates the Universe’s expansion is a field that evolves over cosmological times. This could mean that certain fundamental quantities related to forces and masses were different long ago. However, a new analysis of the spectrum from a very distant quasar finds no evidence of deviation in molecular lines produced 12 billion years ago, thus implying no change in the mass ratio of the proton to the electron.

One possible explanation for dark energy is that it comes from an all-pervasive scalar field, similar to the Higgs field. Such a field would likely interact with other particles, and these interactions could influence fundamental quantities, causing them to change as the scalar field evolves over time. To check for such evolution, scientists often study distant astrophysical bodies, whose light was emitted billions of years ago.

For the proton-electron mass ratio, astronomers look for unexpected shifts in the wavelengths at which molecules absorb light. Most molecules can only be seen in relatively nearby objects, but the hydrogen molecule ( H2) is abundant enough to be observed at great distances. Wim Ubachs of VU University Amsterdam, the Netherlands, and his colleagues analyzed the spectrum of a very distant quasar (J1443+2724) and identified H2 absorption lines from a galaxy in front of the quasar. This absorption signal was etched into the spectrum when the Universe was just 1.5 billion years old. The lines showed no shift (beyond the normal redshift) compared to values measured on Earth, allowing the authors to place an upper bound of a few parts per million on a varying proton-electron mass ratio. The results imply that a dark energy scalar field—if it exists—has evolved very little over 90% the age of the Universe.

This research is published in Physical Review Letters.

–Michael Schirber


Subject Areas

AstrophysicsCosmologyParticles and Fields

Related Articles

An Elusive Black Hole Comes into View
Astrophysics

An Elusive Black Hole Comes into View

Observations of seven fast-moving stars at the center of a dense star cluster in the Milky Way reveal the presence of an intermediate-mass black hole, perhaps the most puzzling class of these dark objects. Read More »

First Direct Detection of Electron Neutrinos at a Particle Collider
Particles and Fields

First Direct Detection of Electron Neutrinos at a Particle Collider

Electron neutrinos produced by proton–proton collisions at the LHC have been experimentally observed. Read More »

Dark Matter Could Bring Black Holes Together
Astrophysics

Dark Matter Could Bring Black Holes Together

Dark matter that interacts with itself could extract significant momentum from a binary supermassive black hole system, causing the black holes to merge. Read More »

More Articles