Synopsis: Predicting the Quantum Past

Predictions for a quantum measurement are improved by probing the system after the measurement and evolving a model backward in time.
Synopsis figure
K. Murch/Washington University, St. Louis

Hindsight in quantum physics isn’t exactly 20/20, but observing an object at a later time can allow a better guess about its earlier quantum state. In a new experiment, researchers used a weak probe to continuously monitor a single qubit over several microseconds, and with that data they tried to predict the qubit state at some intermediate time. Using only the “before” data, the prediction was right in just 50% of the trials. But adding “after” data boosted the success rate to 90%, suggesting that the quantum state reveals more of itself when past and future measurements are combined.

Quantum physics has always been a bit of a guessing game. In the classic double-slit experiment, for example, a precise measurement of the initial (or final) velocity will not tell you for sure through which slit the particle will go (or has gone). Physicists have, however, developed a way to track particles—and other quantum objects—with so-called weak measurements that can provide imprecise information at several points along the path. The question is, does this limited—but extended—information help you make a better guess?

Kater Murch from Washington University in St. Louis, Missouri, and his colleagues played this guessing game with a superconducting qubit in a microwave cavity. The qubit constantly evolves as a superposition of two different energy states, and the team can monitor this seemingly random behavior with weak measurements using microwave photons. Halfway through each experimental run, the team temporarily concealed the microwave data and then tried to predict these “hidden results” by extrapolating the measurements from before and after. The predictions were markedly different and more confident when future measurements were included. These findings give new understanding of weak probes and how they might be used to make precision measurements of, for example, gravitational waves.

This research is published in Physical Review Letters.

–Michael Schirber


Announcements

More Announcements »

Subject Areas

Quantum Physics

Previous Synopsis

Biological Physics

Magnetic Cells

Read More »

Next Synopsis

Related Articles

Viewpoint: Classical Simulation of Quantum Systems?
Optics

Viewpoint: Classical Simulation of Quantum Systems?

Richard Feynman suggested that it takes a quantum computer to simulate large quantum systems, but a new study shows that a classical computer can work when the system has loss and noise. Read More »

Viewpoint: Measuring Quantum Kicks from a Beam of Light
Optics

Viewpoint: Measuring Quantum Kicks from a Beam of Light

Force sensors levitated by light have reached the quantum regime, in which their sensitivity is limited by the momentum kicks of individual photons. Read More »

Focus: <i>Landmarks</i>—Correcting Quantum Computer Errors
Quantum Physics

Focus: Landmarks—Correcting Quantum Computer Errors

In the mid-1990s, researchers proposed methods to preserve the integrity of quantum bits—techniques that may become the key to practical quantum computing on a large scale. Read More »

More Articles