Synopsis

Magnetic Cells

Physics 8, s26
Magnetic nanoparticles can be used to prepare and characterize multicellular aggregates that serve as model systems for biological tissues.
F. Mazuel et al., Phys. Rev. Lett. (2015)

Laboratory-grown cell aggregates (“spheroids”) are used as model systems to simulate how biological tissues grow and develop, and to give insight into their mechanical properties. Now, Claire Wilhelm at Paris Diderot University, France, and colleagues have developed a new method, based on embedded magnetic nanoparticles, for engineering and characterizing spheroids. Unlike other techniques, their method allows large millimeter-sized spheroids to be formed, real-time imaging, and the characterization of multiple mechanical properties, including surface tension, viscoelasticity, and yield stress.

To provide their cells with magnetic properties, the group added magnetic nanoparticles to the cell culture medium. The cells absorbed these nanoparticles with no alteration to their functions. Filling a mold with these cells and turning on a magnetic field, the authors were able to compact the cells, forming a spheroid with uniformly distributed nanoparticles. The technique yielded spheroid sizes up to few millimeters, much larger than those attainable by previous methods.

To probe the spheroids’ mechanical properties, the authors placed them on a flat surface and flattened them by applying a permanent magnetic field. The experiments revealed that small and large spheroids responded differently to flattening: Small spheroids behaved like liquid drops, while larger spheroids behaved like elastic solids at short times and like liquid drops at longer times. The setup could be enhanced to carry out time-dependent measurements by using an electromagnet: An oscillating magnetic flattening force would allow the viscoelastic response of the spheroids at different frequencies to be probed. This technique could also be used to study how processes like cell division or cell death change the mechanical properties of a tissue, and to characterize other soft systems, such as hydrogels or emulations.

This research is published in Physical Review Letters.

–Katherine Wright


Subject Areas

Biological PhysicsMechanics

Related Articles

Noninvasive Alternative to Cancer Biopsy
Biological Physics

Noninvasive Alternative to Cancer Biopsy

Researchers have developed a cancer-detection method that uses painless sound waves, rather than a torturing needle, to obtain genetic information about a patient’s cancer. Read More »

How Droplets Form Inside Cells
Soft Matter

How Droplets Form Inside Cells

A new theory that accounts for disorder in a protein’s structure sheds light on the development inside a cell of tiny droplets that are vital to a cell’s function. Read More »

Giant Clams Are Models of Solar-Energy Efficiency
Optics

Giant Clams Are Models of Solar-Energy Efficiency

A theoretical model for the illumination of photosynthesizing algae in giant clams suggests principles for high efficiency collection of sunlight. Read More »

More Articles