Synopsis

Baryon’s Innards Have Molecular Structure

Physics 8, s38
The Lambda baryon, in its excited state, behaves like a molecule, according to new lattice chromodynamics simulations of the particle’s magnetic structure.
Derek B. Leinweber/University of Adelaide

Graduates of Particle Physics 101 know that baryons are made of three quarks. An excited state of the Lambda baryon, Λ(1405), might, however, defy this simple description: the particle behaves like a “molecule” made of a quark pair and a quark triplet. This picture, which can’t be explained by the standard quark model, has been debated for almost fifty years. Now it’s gaining new support from calculations by theorists at the University of Adelaide, Australia.

What’s puzzling about the Lambda baryon—a bound state of an up, down, and strange quark—is that much less energy is needed to excite it than expected for three bound quarks. The molecular picture explains the difference by assuming the excitation produces two compound particles: an antikaon (composed of a strange quark and an anti-up or anti-down quark) and a nucleon (a proton or neutron). This system of five quarks is more strongly bound than three bare quarks.

Theoretical calculations haven’t, however, been able to convincingly predict Λ(1405)’s structure because they approximated the quantum field theory that describes quarks. Derek Leinweber and his colleagues tackled the problem with lattice quantum chromodynamics, which uses supercomputers to simulate quark theory. The authors calculated the strange quark’s contribution to the Λ(1405) magnetic moment and found it was zero—the value expected if the strange quark is bound in an antikaon in turn bound to a nucleon. The finding is a strong sign that Λ(1405) has an antikaon-nucleon molecular structure: in other configurations, the authors say, the strange quark would have a nonzero magnetic moment.

This research is published in Physical Review Letters.

–Jessica Thomas


Subject Areas

Particles and Fields

Related Articles

Deriving Fundamental Constants from Three-Beam Collisions
Plasma Physics

Deriving Fundamental Constants from Three-Beam Collisions

A proposed experiment involving an x-ray beam and two optical beams could determine the values of fundamental constants in quantum electrodynamics. Read More »

Signatures of Gravitational Atoms from Black Hole Mergers
Astrophysics

Signatures of Gravitational Atoms from Black Hole Mergers

Gravitational-wave signals from black hole mergers could reveal the presence of “gravitational atoms”—black holes surrounded by clouds of axions or other light bosons. Read More »

Gamma-Ray Burst Tightens Constraints on Quantum Gravity
Particles and Fields

Gamma-Ray Burst Tightens Constraints on Quantum Gravity

An analysis of the brightest gamma-ray burst ever observed reveals no difference in the propagation speed of different frequencies of light—placing some of the tightest constraints on certain violations of general relativity. Read More »

More Articles