Synopsis: On-Demand Chemical Bond Formation

A tailored laser pulse controls the formation of a molecular bond between two atoms.
Synopsis figure
Christiane Koch/Universität Kassel and Zohar Amitay/Technion-Israel Institute of Technology

The result of a chemical reaction is dictated by energy potentials and thermodynamics, but physicists have long hoped to steer reactions in new ways with coherent light from lasers. For the first time, researchers demonstrate the coherent control of the reaction by which two atoms form a molecule. The achievement—coupled with other photocatalyst tools—could potentially lead to a chemical assembly line, in which lasers slice and weld molecular pieces into a desired end product.

Coherent control of chemical reactions, which was first proposed thirty years ago, employs shaped laser pulses to place molecular reagents in states that promote a rare reaction process. Several groups have succeeded in controlling which bonds are cut in a target molecule (i.e., selective photodissociation). However, the coherent control of bond formation has proven more elusive.

A collaboration between experimentalists at Technion-Israel Institute of Technology in Haifa, Israel, and theorists at the University of Kassel in Germany has now controlled the photoassociation of a simple molecule. The team fired femtosecond laser pulses at a sample of magnesium atoms, which could absorb multiple infrared photons from the laser to form Mg2. This process is rare, but the researchers found they could alter the Mg2 yield by changing the pulse shape. In particular, a positive chirp (i.e., a pulse whose frequency steadily increases with time) boosted the yield by a factor of 5 over an unshaped pulse. To explain this chirp dependence, the team constructed a model that showed the pulse shape affects transitions between vibrational levels in an intermediate state. With this understanding, they optimized the pulse shape using a feedback system, gaining a further 35% in the reaction yield.

This research is published in Physical Review Letters.

–Michael Schirber


Announcements

More Announcements »

Subject Areas

OpticsChemical Physics

Previous Synopsis

Atomic and Molecular Physics

Symmetric Radium Atoms

Read More »

Next Synopsis

Complex Systems

Finding Patient Zero

Read More »

Related Articles

Focus: Strong Light Reflection from Few Atoms
Optics

Focus: Strong Light Reflection from Few Atoms

Up to 75% of light reflects from just 2000 atoms aligned along an optical fiber, an arrangement that could be useful in photonic circuits. Read More »

Synopsis: Controlling a Laser’s Phase
Optics

Synopsis: Controlling a Laser’s Phase

A compact scheme can directly modulate the phase of a laser without a bulky external modulator. Read More »

Focus: Chip Changes Photon Color While Preserving Quantumness
Photonics

Focus: Chip Changes Photon Color While Preserving Quantumness

A new device that can potentially be scaled up for quantum computing converts visible light to infrared light suitable for fiber-optic transmission without destroying the light’s quantum state. Read More »

More Articles