Synopsis: Robust Yet Flexible Clocks

A theoretical analysis explains why circadian clocks can be robust but also able to adapt to environmental changes.  

In most living organisms, biochemical mechanisms keep body metabolism and sleep patterns synchronized with the night-to-day cycle. Such circadian clocks have to be robust enough to keep a 24-hour pace under fluctuating light or temperature, but also plastic enough to adapt to shifts in the daily cycle that come from, for instance, seasonal changes. But how are these seemingly conflicting properties simultaneously achieved? Theoretical work by researchers at the University of Tokyo, Japan, suggests that the same mechanisms that make a clock robust also enhance its plasticity.

Tetsuhiro Hatakeyama and Kunihiko Kaneko analyzed two models that together represent the vast majority of known circadian clock mechanisms in nature. In such models, cyclical changes in external parameters like temperature or light affect different stages of the biochemical reactions that regulate bodily functions.

Focusing on temperature as a control parameter, the authors analyzed its effect on the rate of key biochemical steps in circadian clocks. They defined a measure of a clock’s robustness as the inverse of the variation of the clock period with temperature and calculated this quantity for the two clock types. The authors then exposed the clocks to cyclic temperature changes and computed how quickly the clocks were entrained by such cycles. Solving the nonlinear equations that describe the clocks in the two different models, the researchers found that the most robust clocks were also the most plastic, that is, the quickest to adjust to shifts in the temperature cycle. They also derived a universal and quantitative law that links robustness and plasticity for all circadian clocks.

This research is published in Physical Review Letters.

–Matteo Rini


Features

More Features »

Announcements

More Announcements »

Subject Areas

Biological PhysicsNonlinear Dynamics

Previous Synopsis

Particles and Fields

LHC Data Might Reveal Nature of Neutrinos

Read More »

Next Synopsis

Related Articles

Synopsis: Cell Sensing Improves in a Loose Crowd
Biological Physics

Synopsis: Cell Sensing Improves in a Loose Crowd

Cells that communicate with each other can measure chemical concentrations with higher precision if they spread out into a sparse configuration.   Read More »

Viewpoint: Reservoir Computing Speeds Up
Nonlinear Dynamics

Viewpoint: Reservoir Computing Speeds Up

A brain-inspired computer made with optoelectronic parts runs faster thanks to a hardware redesign, recognizing simple speech at the rate of 1 million words per second. Read More »

Synopsis: Chaos from a Chilled Cloud of Atoms
Nonlinear Dynamics

Synopsis: Chaos from a Chilled Cloud of Atoms

A map of chaos emerging in a Bose-Einstein condensate provides a rare glimpse of the behavior in a system of many quantum particles.   Read More »

More Articles