Synopsis

Testing General Relativity in a Black Hole’s Shadow

Physics 9, s7
Deviations in the shadow of our Galaxy’s supermassive black hole could reveal violations of general relativity.
T. Johannsen et al., Phys. Rev. Lett. (2016)

The Event Horizon Telescope (EHT), a planet-wide network of radio telescopes, is compiling the first direct image of the giant black hole in the center of our Galaxy. The trapping of light by the hole will produce a dark shadow surrounded by a bright circular ring. A new analysis shows that the EHT could potentially detect small deviations in the shadow size, which are predicted by alternative theories of gravity.

Like most galaxies, our Milky Way has a supermassive black hole, called Sagittarius A* (Sgr A*). Observations of stars orbiting Sgr A* have provided estimates of its mass (about 4 million solar masses) and its distance from us (roughly 27,000 light years). The radius of the black hole, defined by its event horizon, is just 17 times that of the Sun. To image this compact object, astronomers formed the EHT project, which performs interferometry on data from several radio telescopes from around the globe. The group expects to have the first snapshot of Sgr A* in the next few years.

According to general relativity, the warping of space around Sgr A* creates a shadow with an apparent radius of exactly 50 microarcseconds. By contrast, many alternative gravity theories predict a larger or smaller shadow. Tim Johannsen from the Perimeter Institute for Theoretical Physics, Canada, and colleagues analyzed a previously constructed simulation of EHT data for Sgr A*. They first showed that the EHT will dramatically reduce the uncertainties in the mass and distance measurements. They also describe in detail how the EHT will test general relativity by measuring certain spacetime deviation parameters that have nonzero values in alternative gravity theories.

This research is published in Physical Review Letters.

–Michael Schirber


Subject Areas

GravitationAstrophysics

Related Articles

Axion Clouds Enveloping Pulsars
Particles and Fields

Axion Clouds Enveloping Pulsars

Axions—theorized particles that could account for dark matter—could accumulate around rapidly rotating neutron stars to the point that they become detectable. Read More »

An Extraordinary Cosmic Alignment
Astrophysics

An Extraordinary Cosmic Alignment

A rare configuration of seven galaxies aligned behind a galaxy cluster allows researchers to probe with high precision the dark matter distribution within the cluster. Read More »

Heavy Element Formation Limited in Failed Supernovae
Fluid Dynamics

Heavy Element Formation Limited in Failed Supernovae

Despite its intensity, the gravitational collapse of certain massive stars does not produce an abundance of heavy elements. Read More »

More Articles