Synopsis

Cells Go with the Crowd

Physics 9, s24
A simple model suggests a way in which clusters of cells could follow concentration gradients in cases where individual cells cannot.
B. Camley/UCSD

Many biological cells can perform chemotaxis—sensing a chemical, or “chemoattractant,” and moving in the direction of increasing concentration. For example, white blood cells seek invaders, and embryonic cells follow biochemical cues during development. In some cases, only clusters of cells are capable of detecting a concentration gradient, not individual cells, but researchers don’t understand exactly how such “collective” chemotaxis works. Now a team led by Wouter-Jan Rappel of the University of California, San Diego, has developed a simple mathematical model for the process.

The model assumes that each cell has a fluctuating “polarity” that determines its direction and speed of motion. In the model equations, which are based on experimental observations, the polarity of a cell has a preference to point away from its neighbors, so that cells near the edges of a cluster want to move outward. But the equations also specify that the strength of this outward-moving tendency is proportional to the local concentration of the chemoattractant. So whichever edge experiences the highest concentration pulls the hardest and moves the cluster in that direction.

The researchers’ simulations and analytical results show that the model, which assumes no gradient sensing by single cells, produces chemotaxis for cell clusters. It also predicts the speed and direction of motion of a cluster and the effects of cluster shape, size, and orientation. The chemotactic velocity of a two-cell cluster, for example, depends on the pair’s orientation with respect to the concentration gradient, and the team proposes looking for this effect with real cells as a test of the model.

See a video from the paper that shows the simulated trajectories of 1-, 2-, 7-, and 19-cell clusters based on the authors’ model.

This research is published in Physical Review Letters.

–David Ehrenstein


Subject Areas

Biological Physics

Related Articles

Noninvasive Alternative to Cancer Biopsy
Biological Physics

Noninvasive Alternative to Cancer Biopsy

Researchers have developed a cancer-detection method that uses painless sound waves, rather than a torturing needle, to obtain genetic information about a patient’s cancer. Read More »

How Droplets Form Inside Cells
Soft Matter

How Droplets Form Inside Cells

A new theory that accounts for disorder in a protein’s structure sheds light on the development inside a cell of tiny droplets that are vital to a cell’s function. Read More »

Giant Clams Are Models of Solar-Energy Efficiency
Optics

Giant Clams Are Models of Solar-Energy Efficiency

A theoretical model for the illumination of photosynthesizing algae in giant clams suggests principles for high efficiency collection of sunlight. Read More »

More Articles