Synopsis: Topological Origami

Origami formed by folding and cutting a material can feature well-defined, tunable mechanical properties.
Synopsis figure
Bin Liu/Cornell University

Fold a flimsy sheet of paper in half and it becomes stiffer. Keep adding folds and the paper can be transformed into a rigid structure that retains its shape. New theoretical work shows that origami and kirigami (origami in which folds are accompanied by cuts) can be designed to be stiff at one end and floppy at the other by tuning the angles of the folds and the position of the cuts. The resulting constructions fall into one of two distinct topological phases with well-defined mechanical properties.

Bryan Gin-ge Chen, now at the University of Massachusetts Amherst, and colleagues connected a series of four-sided plastic units together, using hinges, to create a long, thin rectangular structure. This structure was squashed between two plates, forcing the material to spontaneously buckle like a concertina into a series of mountains and valleys. The group designed the cell patterns so that the rigidity of the origami was asymmetric along the length of the material. The folds of the resulting structures gradually transitioned from sharp (soft) at one end to shallow (rigid) at the other. The origami was classified into one of two topological phases depending on whether the left or right end was the softest. According to the authors’ predictions, larger square structures with asymmetric mechanical properties may also be designed, but only if sections of the pattern are completely cut out (kirigami). Without holes the folded structures would be uniformly soft at the structure’s edge and rigid in the middle. Chen and his colleagues suggest that their patterns could be used to design materials with tailored mechanical properties.

This research is published in Physical Review Letters.

–Katherine Wright


Features

More Features »

Announcements

More Announcements »

Subject Areas

Materials Science

Previous Synopsis

Related Articles

Focus: Ultrafast Switch with Organic Crystal
Condensed Matter Physics

Focus: Ultrafast Switch with Organic Crystal

An organic crystal was switched between paraelectric and ferroelectric states in a picosecond. Similar materials could eventually serve as extremely fast digital switches. Read More »

Synopsis: Dirac Cones in Boron’s Version of Graphene
Materials Science

Synopsis: Dirac Cones in Boron’s Version of Graphene

A one-atom-thick sheet of boron atoms exhibits Dirac cones, marking the first time this electronic property has been found in a material lacking a graphene-like crystal structure.  Read More »

Synopsis: Golden Mystery Solved
Materials Science

Synopsis: Golden Mystery Solved

A long-standing discrepancy between experiments and theory concerning the electronic properties of gold has now been resolved. Read More »

More Articles