Synopsis

No Vacancy for Tunneling

Physics 9, s53
The tunneling rate for cold atoms in an optical lattice can be made to depend on whether a neighboring site is occupied—a behavior that may reflect the tunneling in complex materials.
F. Meinert et al., Phys. Rev. Lett. (2016)

Cold atoms in an optical lattice are often used to simulate other systems, with the advantage that researchers can create a potential-energy landscape of their choosing. A new study has demonstrated a novel synthetic potential in which the tunneling between lattice sites depends on whether the destination site is occupied or vacant. Such occupation-dependent tunneling processes are believed to have crucial influence on complex materials such as superconductors and ferromagnets.

Recent work has shown that the tunneling rate for cold atoms can be controlled by periodically driving, or “shaking,” the optical lattice in which the atoms are arranged. Researchers have used this so-called Floquet engineering to simulate a wide range of phenomena, such as ferromagnetism and topological insulators.

Normally, shaken lattices modify the tunneling of a single atom, irrespective of the position of other atoms in the lattice. Hanns-Christoph Nägerl, from the University of Innsbruck in Austria, and his colleagues devised a system with occupation-dependent tunneling. The team placed bosonic cesium atoms in a three-dimensional optical lattice and applied a magnetic field to control the atom-atom interaction. Following a periodic modulation of this interaction, the team measured the distribution of atoms in the lattice, showing that the tunneling rate of atoms into occupied sites could be precisely tuned—and, moreover, set to zero—by varying the amplitude and duration of the modulation. Although not directly related to a specific material, this cold-atom system provides a test bed for investigating the possible role of occupation-dependent tunneling in complex materials.

This research is published in Physical Review Letters.

–Michael Schirber

Michael Schirber is a Corresponding Editor for Physics.


Subject Areas

Atomic and Molecular Physics

Related Articles

Seeing Collisions in Cold Molecular Clouds
Atomic and Molecular Physics

Seeing Collisions in Cold Molecular Clouds

Dense ensembles of laser-cooled molecules allow the observation of molecular collisions—a result that could lead to applications of cold molecular gases in quantum simulation and fundamental physics tests. Read More »

Probing Liquid Water’s Structure with Attosecond X-Ray Pulses
Condensed Matter Physics

Probing Liquid Water’s Structure with Attosecond X-Ray Pulses

Using an ultrafast technique, researchers shed light on how the hydrogen-bonded structure of water is reflected in its x-ray spectrum. Read More »

Precise Measurement of Hydrogen’s Energy Levels
Atomic and Molecular Physics

Precise Measurement of Hydrogen’s Energy Levels

Researchers have measured the transition energy of several highly excited states, which could help resolve a discrepancy about the size of the proton. Read More »

More Articles