Synopsis

Tickled by a Wigner Crystal

Physics 9, s92
The lattice symmetry of a quantum Wigner crystal is deduced from its effect on quantized states in a nearby sheet of electrons.
H. Deng et al., Phys. Rev. Lett. (2016)

Left to their own devices, electrons confined to a sheet can crystallize into an ordered array at low temperatures because of their mutual repulsion. Physicists have observed a classical version of this “Wigner crystal” in electrons floating on liquid helium and a quantum variety in electrons trapped at a semiconductor interface. But the lattice geometry of electrons in the latter has been tough to glean. A team led by Mansour Shayegan at Princeton University, New Jersey, obtained this information using a new technique, possibly providing a way to test the many-body theories that predict Wigner crystallization.

The experimental device consists of a stack of two closely spaced semiconductor quantum wells. Electrons in quantum wells are effectively trapped in 2D, and at high magnetic fields and low temperatures they fall into quantized orbits. These states are the basis of the fractional quantum Hall effect (FQHE), whose signature is sharp dips in the resistance at fractional values of the so-called filling factor (the ratio of electron density to field strength).

The team fabricated the top and bottom quantum wells in the stack with different electron densities, choosing densities such that the bottom well didn’t exhibit the FQHE, while the top one did in the researchers’ chosen range of magnetic fields. At low temperatures (less than about 1 K), they observed dips in the top well’s resistance indicating the FQHE. But below 200 mK, the researchers also saw additional shallow resistance wiggles. They could explain the placement of these new features if the electrons trapped in the top well experienced a periodic potential from a triangular-lattice Wigner crystal in the bottom well.

This research is published in Physical Review Letters.

–Jessica Thomas

Jessica Thomas is the Editor of Physics.


Subject Areas

MesoscopicsQuantum Physics

Related Articles

Quantum “Torch” Begins Its Relay
Quantum Physics

Quantum “Torch” Begins Its Relay

A quantum light source is touring European labs in preparation for the 2025 International Year of Quantum Science and Technology. Read More »

Quantum Machine Learning Goes Photonic
Quantum Physics

Quantum Machine Learning Goes Photonic

Measuring a photon’s angular momentum after it passes through optical devices teaches an algorithm to reconstruct the properties of the photon’s initial quantum state. Read More »

Shielding Quantum Light in Space and Time
Quantum Physics

Shielding Quantum Light in Space and Time

A way to create single photons whose spatiotemporal shapes do not expand during propagation could limit information loss in future photonic quantum technologies. Read More »

More Articles